Evaluate
a^{4}-a^{14}
Factor
\left(a-1\right)\left(a+1\right)a^{4}\left(-a^{4}+a^{3}-a^{2}+a-1\right)\left(a^{4}+a^{3}+a^{2}+a+1\right)
Share
Copied to clipboard
a^{4}-\left(a^{2}\right)^{4}\left(a^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}-a^{8}\left(a^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
a^{4}-a^{8}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{4}-a^{14}
To multiply powers of the same base, add their exponents. Add 8 and 6 to get 14.
a^{4}\left(1-a^{10}\right)
Factor out common term a^{4} by using distributive property.
\left(1+a^{5}\right)\left(1-a^{5}\right)
Consider 1-a^{10}. Rewrite 1-a^{10} as 1^{2}-\left(-a^{5}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{5}+1\right)\left(-a^{5}+1\right)
Reorder the terms.
\left(a+1\right)\left(a^{4}-a^{3}+a^{2}-a+1\right)
Consider a^{5}+1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient 1. One such root is -1. Factor the polynomial by dividing it by a+1.
\left(a-1\right)\left(-a^{4}-a^{3}-a^{2}-a-1\right)
Consider -a^{5}+1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient -1. One such root is 1. Factor the polynomial by dividing it by a-1.
a^{4}\left(-a^{4}-a^{3}-a^{2}-a-1\right)\left(a-1\right)\left(a^{4}-a^{3}+a^{2}-a+1\right)\left(a+1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}