Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}\right)^{-5}\left(b^{2}\right)^{-5}}{\left(\frac{a^{-1}}{9^{-5}}\right)^{2}}
Expand \left(a^{2}b^{2}\right)^{-5}.
\frac{a^{-10}\left(b^{2}\right)^{-5}}{\left(\frac{a^{-1}}{9^{-5}}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -5 to get -10.
\frac{a^{-10}b^{-10}}{\left(\frac{a^{-1}}{9^{-5}}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -5 to get -10.
\frac{a^{-10}b^{-10}}{\left(\frac{a^{-1}}{\frac{1}{59049}}\right)^{2}}
Calculate 9 to the power of -5 and get \frac{1}{59049}.
\frac{a^{-10}b^{-10}}{\left(a^{-1}\times 59049\right)^{2}}
Divide a^{-1} by \frac{1}{59049} by multiplying a^{-1} by the reciprocal of \frac{1}{59049}.
\frac{a^{-10}b^{-10}}{\left(a^{-1}\right)^{2}\times 59049^{2}}
Expand \left(a^{-1}\times 59049\right)^{2}.
\frac{a^{-10}b^{-10}}{a^{-2}\times 59049^{2}}
To raise a power to another power, multiply the exponents. Multiply -1 and 2 to get -2.
\frac{a^{-10}b^{-10}}{a^{-2}\times 3486784401}
Calculate 59049 to the power of 2 and get 3486784401.
\frac{b^{-10}}{3486784401a^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(a^{2}\right)^{-5}\left(b^{2}\right)^{-5}}{\left(\frac{a^{-1}}{9^{-5}}\right)^{2}}
Expand \left(a^{2}b^{2}\right)^{-5}.
\frac{a^{-10}\left(b^{2}\right)^{-5}}{\left(\frac{a^{-1}}{9^{-5}}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -5 to get -10.
\frac{a^{-10}b^{-10}}{\left(\frac{a^{-1}}{9^{-5}}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -5 to get -10.
\frac{a^{-10}b^{-10}}{\left(\frac{a^{-1}}{\frac{1}{59049}}\right)^{2}}
Calculate 9 to the power of -5 and get \frac{1}{59049}.
\frac{a^{-10}b^{-10}}{\left(a^{-1}\times 59049\right)^{2}}
Divide a^{-1} by \frac{1}{59049} by multiplying a^{-1} by the reciprocal of \frac{1}{59049}.
\frac{a^{-10}b^{-10}}{\left(a^{-1}\right)^{2}\times 59049^{2}}
Expand \left(a^{-1}\times 59049\right)^{2}.
\frac{a^{-10}b^{-10}}{a^{-2}\times 59049^{2}}
To raise a power to another power, multiply the exponents. Multiply -1 and 2 to get -2.
\frac{a^{-10}b^{-10}}{a^{-2}\times 3486784401}
Calculate 59049 to the power of 2 and get 3486784401.
\frac{b^{-10}}{3486784401a^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.