Evaluate
3a^{5}+6a^{4}+a^{3}+27a^{2}+27
Expand
3a^{5}+6a^{4}+a^{3}+27a^{2}+27
Share
Copied to clipboard
\left(a^{2}\right)^{3}+9\left(a^{2}\right)^{2}+27a^{2}+27-\left(a^{2}-a\right)^{3}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a^{2}+3\right)^{3}.
a^{6}+9\left(a^{2}\right)^{2}+27a^{2}+27-\left(a^{2}-a\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{2}-a\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}+9a^{4}+27a^{2}+27-\left(\left(a^{2}\right)^{3}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-a\right)^{3}.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{6}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{6}-3a^{4}a+3a^{2}a^{2}-a^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{6}-3a^{5}+3a^{2}a^{2}-a^{3}\right)
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{6}-3a^{5}+3a^{4}-a^{3}\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{6}+9a^{4}+27a^{2}+27-a^{6}+3a^{5}-3a^{4}+a^{3}
To find the opposite of a^{6}-3a^{5}+3a^{4}-a^{3}, find the opposite of each term.
9a^{4}+27a^{2}+27+3a^{5}-3a^{4}+a^{3}
Combine a^{6} and -a^{6} to get 0.
6a^{4}+27a^{2}+27+3a^{5}+a^{3}
Combine 9a^{4} and -3a^{4} to get 6a^{4}.
\left(a^{2}\right)^{3}+9\left(a^{2}\right)^{2}+27a^{2}+27-\left(a^{2}-a\right)^{3}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a^{2}+3\right)^{3}.
a^{6}+9\left(a^{2}\right)^{2}+27a^{2}+27-\left(a^{2}-a\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{2}-a\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}+9a^{4}+27a^{2}+27-\left(\left(a^{2}\right)^{3}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-a\right)^{3}.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{6}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{6}-3a^{4}a+3a^{2}a^{2}-a^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{6}-3a^{5}+3a^{2}a^{2}-a^{3}\right)
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
a^{6}+9a^{4}+27a^{2}+27-\left(a^{6}-3a^{5}+3a^{4}-a^{3}\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
a^{6}+9a^{4}+27a^{2}+27-a^{6}+3a^{5}-3a^{4}+a^{3}
To find the opposite of a^{6}-3a^{5}+3a^{4}-a^{3}, find the opposite of each term.
9a^{4}+27a^{2}+27+3a^{5}-3a^{4}+a^{3}
Combine a^{6} and -a^{6} to get 0.
6a^{4}+27a^{2}+27+3a^{5}+a^{3}
Combine 9a^{4} and -3a^{4} to get 6a^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}