Evaluate
a^{2}\left(a^{2}-1\right)
Expand
a^{4}-a^{2}
Share
Copied to clipboard
\left(a^{2}\right)^{2}+a^{2}+\frac{1}{4}-2\left(a^{2}+\frac{1}{8}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+\frac{1}{2}\right)^{2}.
a^{4}+a^{2}+\frac{1}{4}-2\left(a^{2}+\frac{1}{8}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}+a^{2}+\frac{1}{4}-2a^{2}-\frac{1}{4}
Use the distributive property to multiply -2 by a^{2}+\frac{1}{8}.
a^{4}-a^{2}+\frac{1}{4}-\frac{1}{4}
Combine a^{2} and -2a^{2} to get -a^{2}.
a^{4}-a^{2}
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
\left(a^{2}\right)^{2}+a^{2}+\frac{1}{4}-2\left(a^{2}+\frac{1}{8}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+\frac{1}{2}\right)^{2}.
a^{4}+a^{2}+\frac{1}{4}-2\left(a^{2}+\frac{1}{8}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{4}+a^{2}+\frac{1}{4}-2a^{2}-\frac{1}{4}
Use the distributive property to multiply -2 by a^{2}+\frac{1}{8}.
a^{4}-a^{2}+\frac{1}{4}-\frac{1}{4}
Combine a^{2} and -2a^{2} to get -a^{2}.
a^{4}-a^{2}
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}