Solve for a
a=\frac{x}{x+1}
x\neq -1
Solve for x
x=\frac{a}{1-a}
a\neq 1
Graph
Share
Copied to clipboard
a-ax+x-x^{2}=2a-x^{2}
Use the distributive property to multiply a+x by 1-x.
a-ax+x-x^{2}-2a=-x^{2}
Subtract 2a from both sides.
-a-ax+x-x^{2}=-x^{2}
Combine a and -2a to get -a.
-a-ax-x^{2}=-x^{2}-x
Subtract x from both sides.
-a-ax=-x^{2}-x+x^{2}
Add x^{2} to both sides.
-a-ax=-x
Combine -x^{2} and x^{2} to get 0.
\left(-1-x\right)a=-x
Combine all terms containing a.
\left(-x-1\right)a=-x
The equation is in standard form.
\frac{\left(-x-1\right)a}{-x-1}=-\frac{x}{-x-1}
Divide both sides by -x-1.
a=-\frac{x}{-x-1}
Dividing by -x-1 undoes the multiplication by -x-1.
a=\frac{x}{x+1}
Divide -x by -x-1.
a-ax+x-x^{2}=2a-x^{2}
Use the distributive property to multiply a+x by 1-x.
a-ax+x-x^{2}+x^{2}=2a
Add x^{2} to both sides.
a-ax+x=2a
Combine -x^{2} and x^{2} to get 0.
-ax+x=2a-a
Subtract a from both sides.
-ax+x=a
Combine 2a and -a to get a.
\left(-a+1\right)x=a
Combine all terms containing x.
\left(1-a\right)x=a
The equation is in standard form.
\frac{\left(1-a\right)x}{1-a}=\frac{a}{1-a}
Divide both sides by 1-a.
x=\frac{a}{1-a}
Dividing by 1-a undoes the multiplication by 1-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}