Solve for a (complex solution)
\left\{\begin{matrix}\\a=d\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=d\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Solve for d
d=a
d=0
Share
Copied to clipboard
a^{2}+2ad+d^{2}=a\left(a+3d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+d\right)^{2}.
a^{2}+2ad+d^{2}=a^{2}+3ad
Use the distributive property to multiply a by a+3d.
a^{2}+2ad+d^{2}-a^{2}=3ad
Subtract a^{2} from both sides.
2ad+d^{2}=3ad
Combine a^{2} and -a^{2} to get 0.
2ad+d^{2}-3ad=0
Subtract 3ad from both sides.
-ad+d^{2}=0
Combine 2ad and -3ad to get -ad.
-ad=-d^{2}
Subtract d^{2} from both sides. Anything subtracted from zero gives its negation.
ad=d^{2}
Cancel out -1 on both sides.
da=d^{2}
The equation is in standard form.
\frac{da}{d}=\frac{d^{2}}{d}
Divide both sides by d.
a=\frac{d^{2}}{d}
Dividing by d undoes the multiplication by d.
a=d
Divide d^{2} by d.
a^{2}+2ad+d^{2}=a\left(a+3d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+d\right)^{2}.
a^{2}+2ad+d^{2}=a^{2}+3ad
Use the distributive property to multiply a by a+3d.
a^{2}+2ad+d^{2}-a^{2}=3ad
Subtract a^{2} from both sides.
2ad+d^{2}=3ad
Combine a^{2} and -a^{2} to get 0.
2ad+d^{2}-3ad=0
Subtract 3ad from both sides.
-ad+d^{2}=0
Combine 2ad and -3ad to get -ad.
-ad=-d^{2}
Subtract d^{2} from both sides. Anything subtracted from zero gives its negation.
ad=d^{2}
Cancel out -1 on both sides.
da=d^{2}
The equation is in standard form.
\frac{da}{d}=\frac{d^{2}}{d}
Divide both sides by d.
a=\frac{d^{2}}{d}
Dividing by d undoes the multiplication by d.
a=d
Divide d^{2} by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}