Solve for a
a=-\frac{ibx-by-1}{x+iy}
x\neq -iy
Solve for b
b=-\frac{ax+iay-1}{ix-y}
x\neq -iy
Share
Copied to clipboard
ax+iay+ibx-yb=1
Use the distributive property to multiply a+bi by x+yi.
ax+iay-yb=1-ibx
Subtract ibx from both sides.
ax+iay=1-ibx+yb
Add yb to both sides.
ax+iay=-ibx+by+1
Reorder the terms.
\left(x+iy\right)a=-ibx+by+1
Combine all terms containing a.
\left(x+iy\right)a=1+by-ibx
The equation is in standard form.
\frac{\left(x+iy\right)a}{x+iy}=\frac{1+by-ibx}{x+iy}
Divide both sides by x+iy.
a=\frac{1+by-ibx}{x+iy}
Dividing by x+iy undoes the multiplication by x+iy.
ax+iay+ibx-yb=1
Use the distributive property to multiply a+bi by x+yi.
iay+ibx-yb=1-ax
Subtract ax from both sides.
ibx-yb=1-ax-iay
Subtract iay from both sides.
ibx-by=-ax-iay+1
Reorder the terms.
\left(ix-y\right)b=-ax-iay+1
Combine all terms containing b.
\left(ix-y\right)b=1-iay-ax
The equation is in standard form.
\frac{\left(ix-y\right)b}{ix-y}=\frac{1-iay-ax}{ix-y}
Divide both sides by ix-y.
b=\frac{1-iay-ax}{ix-y}
Dividing by ix-y undoes the multiplication by ix-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}