Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

ax^{2}+bx^{2}-2cx^{2}+\left(2a-b-c\right)x+c+a-2b=0
Use the distributive property to multiply a+b-2c by x^{2}.
ax^{2}+bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=0
Use the distributive property to multiply 2a-b-c by x.
ax^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=-bx^{2}
Subtract bx^{2} from both sides. Anything subtracted from zero gives its negation.
ax^{2}+2ax-bx-cx+c+a-2b=-bx^{2}+2cx^{2}
Add 2cx^{2} to both sides.
ax^{2}+2ax-cx+c+a-2b=-bx^{2}+2cx^{2}+bx
Add bx to both sides.
ax^{2}+2ax+c+a-2b=-bx^{2}+2cx^{2}+bx+cx
Add cx to both sides.
ax^{2}+2ax+a-2b=-bx^{2}+2cx^{2}+bx+cx-c
Subtract c from both sides.
ax^{2}+2ax+a=-bx^{2}+2cx^{2}+bx+cx-c+2b
Add 2b to both sides.
ax^{2}+2ax+a=2cx^{2}-bx^{2}+bx+cx-c+2b
Reorder the terms.
\left(x^{2}+2x+1\right)a=2cx^{2}-bx^{2}+bx+cx-c+2b
Combine all terms containing a.
\left(x^{2}+2x+1\right)a=-bx^{2}+2cx^{2}+bx+cx+2b-c
The equation is in standard form.
\frac{\left(x^{2}+2x+1\right)a}{x^{2}+2x+1}=\frac{\left(x+1\right)\left(-bx+2cx+2b-c\right)}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
a=\frac{\left(x+1\right)\left(-bx+2cx+2b-c\right)}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
a=\frac{-bx+2cx+2b-c}{x+1}
Divide \left(1+x\right)\left(2b-c-xb+2cx\right) by x^{2}+2x+1.
ax^{2}+bx^{2}-2cx^{2}+\left(2a-b-c\right)x+c+a-2b=0
Use the distributive property to multiply a+b-2c by x^{2}.
ax^{2}+bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=0
Use the distributive property to multiply 2a-b-c by x.
bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
bx^{2}+2ax-bx-cx+c+a-2b=-ax^{2}+2cx^{2}
Add 2cx^{2} to both sides.
bx^{2}-bx-cx+c+a-2b=-ax^{2}+2cx^{2}-2ax
Subtract 2ax from both sides.
bx^{2}-bx+c+a-2b=-ax^{2}+2cx^{2}-2ax+cx
Add cx to both sides.
bx^{2}-bx+a-2b=-ax^{2}+2cx^{2}-2ax+cx-c
Subtract c from both sides.
bx^{2}-bx-2b=-ax^{2}+2cx^{2}-2ax+cx-c-a
Subtract a from both sides.
bx^{2}-bx-2b=2cx^{2}-ax^{2}+cx-2ax-a-c
Reorder the terms.
\left(x^{2}-x-2\right)b=2cx^{2}-ax^{2}+cx-2ax-a-c
Combine all terms containing b.
\left(x^{2}-x-2\right)b=-ax^{2}+2cx^{2}+cx-2ax-a-c
The equation is in standard form.
\frac{\left(x^{2}-x-2\right)b}{x^{2}-x-2}=\frac{\left(x+1\right)\left(-ax+2cx-a-c\right)}{x^{2}-x-2}
Divide both sides by x^{2}-x-2.
b=\frac{\left(x+1\right)\left(-ax+2cx-a-c\right)}{x^{2}-x-2}
Dividing by x^{2}-x-2 undoes the multiplication by x^{2}-x-2.
b=\frac{-ax+2cx-a-c}{x-2}
Divide \left(1+x\right)\left(-a-c-xa+2cx\right) by x^{2}-x-2.
ax^{2}+bx^{2}-2cx^{2}+\left(2a-b-c\right)x+c+a-2b=0
Use the distributive property to multiply a+b-2c by x^{2}.
ax^{2}+bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=0
Use the distributive property to multiply 2a-b-c by x.
ax^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=-bx^{2}
Subtract bx^{2} from both sides. Anything subtracted from zero gives its negation.
ax^{2}+2ax-bx-cx+c+a-2b=-bx^{2}+2cx^{2}
Add 2cx^{2} to both sides.
ax^{2}+2ax-cx+c+a-2b=-bx^{2}+2cx^{2}+bx
Add bx to both sides.
ax^{2}+2ax+c+a-2b=-bx^{2}+2cx^{2}+bx+cx
Add cx to both sides.
ax^{2}+2ax+a-2b=-bx^{2}+2cx^{2}+bx+cx-c
Subtract c from both sides.
ax^{2}+2ax+a=-bx^{2}+2cx^{2}+bx+cx-c+2b
Add 2b to both sides.
ax^{2}+2ax+a=2cx^{2}-bx^{2}+bx+cx-c+2b
Reorder the terms.
\left(x^{2}+2x+1\right)a=2cx^{2}-bx^{2}+bx+cx-c+2b
Combine all terms containing a.
\left(x^{2}+2x+1\right)a=-bx^{2}+2cx^{2}+bx+cx+2b-c
The equation is in standard form.
\frac{\left(x^{2}+2x+1\right)a}{x^{2}+2x+1}=\frac{\left(x+1\right)\left(-bx+2cx+2b-c\right)}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
a=\frac{\left(x+1\right)\left(-bx+2cx+2b-c\right)}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
a=\frac{-bx+2cx+2b-c}{x+1}
Divide \left(1+x\right)\left(2b-c-xb+2cx\right) by x^{2}+2x+1.
ax^{2}+bx^{2}-2cx^{2}+\left(2a-b-c\right)x+c+a-2b=0
Use the distributive property to multiply a+b-2c by x^{2}.
ax^{2}+bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=0
Use the distributive property to multiply 2a-b-c by x.
bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
bx^{2}+2ax-bx-cx+c+a-2b=-ax^{2}+2cx^{2}
Add 2cx^{2} to both sides.
bx^{2}-bx-cx+c+a-2b=-ax^{2}+2cx^{2}-2ax
Subtract 2ax from both sides.
bx^{2}-bx+c+a-2b=-ax^{2}+2cx^{2}-2ax+cx
Add cx to both sides.
bx^{2}-bx+a-2b=-ax^{2}+2cx^{2}-2ax+cx-c
Subtract c from both sides.
bx^{2}-bx-2b=-ax^{2}+2cx^{2}-2ax+cx-c-a
Subtract a from both sides.
bx^{2}-bx-2b=2cx^{2}-ax^{2}+cx-2ax-a-c
Reorder the terms.
\left(x^{2}-x-2\right)b=2cx^{2}-ax^{2}+cx-2ax-a-c
Combine all terms containing b.
\left(x^{2}-x-2\right)b=-ax^{2}+2cx^{2}+cx-2ax-a-c
The equation is in standard form.
\frac{\left(x^{2}-x-2\right)b}{x^{2}-x-2}=\frac{\left(x+1\right)\left(-ax+2cx-a-c\right)}{x^{2}-x-2}
Divide both sides by x^{2}-x-2.
b=\frac{\left(x+1\right)\left(-ax+2cx-a-c\right)}{x^{2}-x-2}
Dividing by x^{2}-x-2 undoes the multiplication by x^{2}-x-2.
b=\frac{-ax+2cx-a-c}{x-2}
Divide \left(1+x\right)\left(-a-c-xa+2cx\right) by x^{2}-x-2.