Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{bx-2cx+c-2b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{ax-2cx+a+c}{x-2}\text{, }&x\neq 2\\b\in \mathrm{C}\text{, }&x=-1\text{ or }\left(x=2\text{ and }a=c\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bx-2cx+c-2b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax-2cx+a+c}{x-2}\text{, }&x\neq 2\\b\in \mathrm{R}\text{, }&x=-1\text{ or }\left(x=2\text{ and }a=c\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}+bx^{2}-2cx^{2}+\left(2a-b-c\right)x+c+a-2b=0
Use the distributive property to multiply a+b-2c by x^{2}.
ax^{2}+bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=0
Use the distributive property to multiply 2a-b-c by x.
ax^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=-bx^{2}
Subtract bx^{2} from both sides. Anything subtracted from zero gives its negation.
ax^{2}+2ax-bx-cx+c+a-2b=-bx^{2}+2cx^{2}
Add 2cx^{2} to both sides.
ax^{2}+2ax-cx+c+a-2b=-bx^{2}+2cx^{2}+bx
Add bx to both sides.
ax^{2}+2ax+c+a-2b=-bx^{2}+2cx^{2}+bx+cx
Add cx to both sides.
ax^{2}+2ax+a-2b=-bx^{2}+2cx^{2}+bx+cx-c
Subtract c from both sides.
ax^{2}+2ax+a=-bx^{2}+2cx^{2}+bx+cx-c+2b
Add 2b to both sides.
ax^{2}+2ax+a=2cx^{2}-bx^{2}+bx+cx-c+2b
Reorder the terms.
\left(x^{2}+2x+1\right)a=2cx^{2}-bx^{2}+bx+cx-c+2b
Combine all terms containing a.
\left(x^{2}+2x+1\right)a=-bx^{2}+2cx^{2}+bx+cx+2b-c
The equation is in standard form.
\frac{\left(x^{2}+2x+1\right)a}{x^{2}+2x+1}=\frac{\left(x+1\right)\left(-bx+2cx+2b-c\right)}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
a=\frac{\left(x+1\right)\left(-bx+2cx+2b-c\right)}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
a=\frac{-bx+2cx+2b-c}{x+1}
Divide \left(1+x\right)\left(2b-c-xb+2cx\right) by x^{2}+2x+1.
ax^{2}+bx^{2}-2cx^{2}+\left(2a-b-c\right)x+c+a-2b=0
Use the distributive property to multiply a+b-2c by x^{2}.
ax^{2}+bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=0
Use the distributive property to multiply 2a-b-c by x.
bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
bx^{2}+2ax-bx-cx+c+a-2b=-ax^{2}+2cx^{2}
Add 2cx^{2} to both sides.
bx^{2}-bx-cx+c+a-2b=-ax^{2}+2cx^{2}-2ax
Subtract 2ax from both sides.
bx^{2}-bx+c+a-2b=-ax^{2}+2cx^{2}-2ax+cx
Add cx to both sides.
bx^{2}-bx+a-2b=-ax^{2}+2cx^{2}-2ax+cx-c
Subtract c from both sides.
bx^{2}-bx-2b=-ax^{2}+2cx^{2}-2ax+cx-c-a
Subtract a from both sides.
bx^{2}-bx-2b=2cx^{2}-ax^{2}+cx-2ax-a-c
Reorder the terms.
\left(x^{2}-x-2\right)b=2cx^{2}-ax^{2}+cx-2ax-a-c
Combine all terms containing b.
\left(x^{2}-x-2\right)b=-ax^{2}+2cx^{2}+cx-2ax-a-c
The equation is in standard form.
\frac{\left(x^{2}-x-2\right)b}{x^{2}-x-2}=\frac{\left(x+1\right)\left(-ax+2cx-a-c\right)}{x^{2}-x-2}
Divide both sides by x^{2}-x-2.
b=\frac{\left(x+1\right)\left(-ax+2cx-a-c\right)}{x^{2}-x-2}
Dividing by x^{2}-x-2 undoes the multiplication by x^{2}-x-2.
b=\frac{-ax+2cx-a-c}{x-2}
Divide \left(1+x\right)\left(-a-c-xa+2cx\right) by x^{2}-x-2.
ax^{2}+bx^{2}-2cx^{2}+\left(2a-b-c\right)x+c+a-2b=0
Use the distributive property to multiply a+b-2c by x^{2}.
ax^{2}+bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=0
Use the distributive property to multiply 2a-b-c by x.
ax^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=-bx^{2}
Subtract bx^{2} from both sides. Anything subtracted from zero gives its negation.
ax^{2}+2ax-bx-cx+c+a-2b=-bx^{2}+2cx^{2}
Add 2cx^{2} to both sides.
ax^{2}+2ax-cx+c+a-2b=-bx^{2}+2cx^{2}+bx
Add bx to both sides.
ax^{2}+2ax+c+a-2b=-bx^{2}+2cx^{2}+bx+cx
Add cx to both sides.
ax^{2}+2ax+a-2b=-bx^{2}+2cx^{2}+bx+cx-c
Subtract c from both sides.
ax^{2}+2ax+a=-bx^{2}+2cx^{2}+bx+cx-c+2b
Add 2b to both sides.
ax^{2}+2ax+a=2cx^{2}-bx^{2}+bx+cx-c+2b
Reorder the terms.
\left(x^{2}+2x+1\right)a=2cx^{2}-bx^{2}+bx+cx-c+2b
Combine all terms containing a.
\left(x^{2}+2x+1\right)a=-bx^{2}+2cx^{2}+bx+cx+2b-c
The equation is in standard form.
\frac{\left(x^{2}+2x+1\right)a}{x^{2}+2x+1}=\frac{\left(x+1\right)\left(-bx+2cx+2b-c\right)}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
a=\frac{\left(x+1\right)\left(-bx+2cx+2b-c\right)}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
a=\frac{-bx+2cx+2b-c}{x+1}
Divide \left(1+x\right)\left(2b-c-xb+2cx\right) by x^{2}+2x+1.
ax^{2}+bx^{2}-2cx^{2}+\left(2a-b-c\right)x+c+a-2b=0
Use the distributive property to multiply a+b-2c by x^{2}.
ax^{2}+bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=0
Use the distributive property to multiply 2a-b-c by x.
bx^{2}-2cx^{2}+2ax-bx-cx+c+a-2b=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
bx^{2}+2ax-bx-cx+c+a-2b=-ax^{2}+2cx^{2}
Add 2cx^{2} to both sides.
bx^{2}-bx-cx+c+a-2b=-ax^{2}+2cx^{2}-2ax
Subtract 2ax from both sides.
bx^{2}-bx+c+a-2b=-ax^{2}+2cx^{2}-2ax+cx
Add cx to both sides.
bx^{2}-bx+a-2b=-ax^{2}+2cx^{2}-2ax+cx-c
Subtract c from both sides.
bx^{2}-bx-2b=-ax^{2}+2cx^{2}-2ax+cx-c-a
Subtract a from both sides.
bx^{2}-bx-2b=2cx^{2}-ax^{2}+cx-2ax-a-c
Reorder the terms.
\left(x^{2}-x-2\right)b=2cx^{2}-ax^{2}+cx-2ax-a-c
Combine all terms containing b.
\left(x^{2}-x-2\right)b=-ax^{2}+2cx^{2}+cx-2ax-a-c
The equation is in standard form.
\frac{\left(x^{2}-x-2\right)b}{x^{2}-x-2}=\frac{\left(x+1\right)\left(-ax+2cx-a-c\right)}{x^{2}-x-2}
Divide both sides by x^{2}-x-2.
b=\frac{\left(x+1\right)\left(-ax+2cx-a-c\right)}{x^{2}-x-2}
Dividing by x^{2}-x-2 undoes the multiplication by x^{2}-x-2.
b=\frac{-ax+2cx-a-c}{x-2}
Divide \left(1+x\right)\left(-a-c-xa+2cx\right) by x^{2}-x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}