Solve for a (complex solution)
\left\{\begin{matrix}\\a=-b\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=-a\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=-b\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=-a\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Graph
Share
Copied to clipboard
ax+bx=a+b
Use the distributive property to multiply a+b by x.
ax+bx-a=b
Subtract a from both sides.
ax-a=b-bx
Subtract bx from both sides.
\left(x-1\right)a=b-bx
Combine all terms containing a.
\frac{\left(x-1\right)a}{x-1}=\frac{b-bx}{x-1}
Divide both sides by -1+x.
a=\frac{b-bx}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
a=-b
Divide b-bx by -1+x.
ax+bx=a+b
Use the distributive property to multiply a+b by x.
ax+bx-b=a
Subtract b from both sides.
bx-b=a-ax
Subtract ax from both sides.
\left(x-1\right)b=a-ax
Combine all terms containing b.
\frac{\left(x-1\right)b}{x-1}=\frac{a-ax}{x-1}
Divide both sides by -1+x.
b=\frac{a-ax}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
b=-a
Divide a-ax by -1+x.
ax+bx=a+b
Use the distributive property to multiply a+b by x.
ax+bx-a=b
Subtract a from both sides.
ax-a=b-bx
Subtract bx from both sides.
\left(x-1\right)a=b-bx
Combine all terms containing a.
\frac{\left(x-1\right)a}{x-1}=\frac{b-bx}{x-1}
Divide both sides by -1+x.
a=\frac{b-bx}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
a=-b
Divide b-bx by -1+x.
ax+bx=a+b
Use the distributive property to multiply a+b by x.
ax+bx-b=a
Subtract b from both sides.
bx-b=a-ax
Subtract ax from both sides.
\left(x-1\right)b=a-ax
Combine all terms containing b.
\frac{\left(x-1\right)b}{x-1}=\frac{a-ax}{x-1}
Divide both sides by -1+x.
b=\frac{a-ax}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
b=-a
Divide a-ax by -1+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}