Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-b^{2}-a\left(a-1\right)
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}-\left(a^{2}-a\right)
Use the distributive property to multiply a by a-1.
a^{2}-b^{2}-a^{2}-\left(-a\right)
To find the opposite of a^{2}-a, find the opposite of each term.
a^{2}-b^{2}-a^{2}+a
The opposite of -a is a.
-b^{2}+a
Combine a^{2} and -a^{2} to get 0.
a^{2}-b^{2}-a\left(a-1\right)
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}-\left(a^{2}-a\right)
Use the distributive property to multiply a by a-1.
a^{2}-b^{2}-a^{2}-\left(-a\right)
To find the opposite of a^{2}-a, find the opposite of each term.
a^{2}-b^{2}-a^{2}+a
The opposite of -a is a.
-b^{2}+a
Combine a^{2} and -a^{2} to get 0.