Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-b^{2}-\left(a+b\right)\left(a-b\right)
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}-\left(a^{2}-b^{2}\right)
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}-a^{2}-\left(-b^{2}\right)
To find the opposite of a^{2}-b^{2}, find the opposite of each term.
a^{2}-b^{2}-a^{2}+b^{2}
The opposite of -b^{2} is b^{2}.
-b^{2}+b^{2}
Combine a^{2} and -a^{2} to get 0.
0
Combine -b^{2} and b^{2} to get 0.
\left(1-1\right)\left(\text{Indeterminate}+\text{Indeterminate}+\text{Indeterminate}+\text{Indeterminate}\right)
Factor out common term 1-1 by using distributive property.
\text{Indeterminate}
Rewrite the complete factored expression.