Solve for b
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a
a=b
a=0
Share
Copied to clipboard
a^{2}-b^{2}=b\left(a-b\right)
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}=ba-b^{2}
Use the distributive property to multiply b by a-b.
a^{2}-b^{2}-ba=-b^{2}
Subtract ba from both sides.
a^{2}-b^{2}-ba+b^{2}=0
Add b^{2} to both sides.
a^{2}-ba=0
Combine -b^{2} and b^{2} to get 0.
-ba=-a^{2}
Subtract a^{2} from both sides. Anything subtracted from zero gives its negation.
ba=a^{2}
Cancel out -1 on both sides.
ab=a^{2}
The equation is in standard form.
\frac{ab}{a}=\frac{a^{2}}{a}
Divide both sides by a.
b=\frac{a^{2}}{a}
Dividing by a undoes the multiplication by a.
b=a
Divide a^{2} by a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}