Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-b^{2}+\left(a+b\right)^{2}-2\left(a-b\right)^{2}
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}+a^{2}+2ab+b^{2}-2\left(a-b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
2a^{2}-b^{2}+2ab+b^{2}-2\left(a-b\right)^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+2ab-2\left(a-b\right)^{2}
Combine -b^{2} and b^{2} to get 0.
2a^{2}+2ab-2\left(a^{2}-2ab+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
2a^{2}+2ab-2a^{2}+4ab-2b^{2}
Use the distributive property to multiply -2 by a^{2}-2ab+b^{2}.
2ab+4ab-2b^{2}
Combine 2a^{2} and -2a^{2} to get 0.
6ab-2b^{2}
Combine 2ab and 4ab to get 6ab.
a^{2}-b^{2}+\left(a+b\right)^{2}-2\left(a-b\right)^{2}
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}+a^{2}+2ab+b^{2}-2\left(a-b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
2a^{2}-b^{2}+2ab+b^{2}-2\left(a-b\right)^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+2ab-2\left(a-b\right)^{2}
Combine -b^{2} and b^{2} to get 0.
2a^{2}+2ab-2\left(a^{2}-2ab+b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
2a^{2}+2ab-2a^{2}+4ab-2b^{2}
Use the distributive property to multiply -2 by a^{2}-2ab+b^{2}.
2ab+4ab-2b^{2}
Combine 2a^{2} and -2a^{2} to get 0.
6ab-2b^{2}
Combine 2ab and 4ab to get 6ab.