Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-b^{2}+\left(a+2b\right)^{2}+2\left(-2\right)ab
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}+a^{2}+4ab+4b^{2}+2\left(-2\right)ab
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2b\right)^{2}.
2a^{2}-b^{2}+4ab+4b^{2}+2\left(-2\right)ab
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+3b^{2}+4ab+2\left(-2\right)ab
Combine -b^{2} and 4b^{2} to get 3b^{2}.
2a^{2}+3b^{2}+4ab-4ab
Multiply 2 and -2 to get -4.
2a^{2}+3b^{2}
Combine 4ab and -4ab to get 0.
a^{2}-b^{2}+\left(a+2b\right)^{2}+2\left(-2\right)ab
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-b^{2}+a^{2}+4ab+4b^{2}+2\left(-2\right)ab
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+2b\right)^{2}.
2a^{2}-b^{2}+4ab+4b^{2}+2\left(-2\right)ab
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}+3b^{2}+4ab+2\left(-2\right)ab
Combine -b^{2} and 4b^{2} to get 3b^{2}.
2a^{2}+3b^{2}+4ab-4ab
Multiply 2 and -2 to get -4.
2a^{2}+3b^{2}
Combine 4ab and -4ab to get 0.