Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(a+b\right)\left(a-2b\right)+\frac{4a\left(-2a+b\right)b^{2}}{-4ab}
Factor the expressions that are not already factored in \frac{4ab^{3}-8a^{2}b^{2}}{-4ab}.
\left(a+b\right)\left(a-2b\right)+\frac{b\left(-2a+b\right)}{-1}
Cancel out 4ab in both numerator and denominator.
\left(a+b\right)\left(a-2b\right)-b\left(-2a+b\right)
Anything divided by -1 gives its opposite.
a^{2}-ab-2b^{2}-b\left(-2a+b\right)
Use the distributive property to multiply a+b by a-2b and combine like terms.
a^{2}-ab-2b^{2}-\left(-2ba+b^{2}\right)
Use the distributive property to multiply b by -2a+b.
a^{2}-ab-2b^{2}+2ba-b^{2}
To find the opposite of -2ba+b^{2}, find the opposite of each term.
a^{2}+ab-2b^{2}-b^{2}
Combine -ab and 2ba to get ab.
a^{2}+ab-3b^{2}
Combine -2b^{2} and -b^{2} to get -3b^{2}.
\left(a+b\right)\left(a-2b\right)+\frac{4a\left(-2a+b\right)b^{2}}{-4ab}
Factor the expressions that are not already factored in \frac{4ab^{3}-8a^{2}b^{2}}{-4ab}.
\left(a+b\right)\left(a-2b\right)+\frac{b\left(-2a+b\right)}{-1}
Cancel out 4ab in both numerator and denominator.
\left(a+b\right)\left(a-2b\right)-b\left(-2a+b\right)
Anything divided by -1 gives its opposite.
a^{2}-ab-2b^{2}-b\left(-2a+b\right)
Use the distributive property to multiply a+b by a-2b and combine like terms.
a^{2}-ab-2b^{2}-\left(-2ba+b^{2}\right)
Use the distributive property to multiply b by -2a+b.
a^{2}-ab-2b^{2}+2ba-b^{2}
To find the opposite of -2ba+b^{2}, find the opposite of each term.
a^{2}+ab-2b^{2}-b^{2}
Combine -ab and 2ba to get ab.
a^{2}+ab-3b^{2}
Combine -2b^{2} and -b^{2} to get -3b^{2}.