Solve for a
a=-\frac{b}{1-b}
b\neq 1
Solve for b
b=-\frac{a}{1-a}
a\neq 1
Share
Copied to clipboard
2a+2b=ab+ab
Use the distributive property to multiply a+b by 2.
2a+2b=2ab
Combine ab and ab to get 2ab.
2a+2b-2ab=0
Subtract 2ab from both sides.
2a-2ab=-2b
Subtract 2b from both sides. Anything subtracted from zero gives its negation.
\left(2-2b\right)a=-2b
Combine all terms containing a.
\frac{\left(2-2b\right)a}{2-2b}=-\frac{2b}{2-2b}
Divide both sides by 2-2b.
a=-\frac{2b}{2-2b}
Dividing by 2-2b undoes the multiplication by 2-2b.
a=-\frac{b}{1-b}
Divide -2b by 2-2b.
2a+2b=ab+ab
Use the distributive property to multiply a+b by 2.
2a+2b=2ab
Combine ab and ab to get 2ab.
2a+2b-2ab=0
Subtract 2ab from both sides.
2b-2ab=-2a
Subtract 2a from both sides. Anything subtracted from zero gives its negation.
\left(2-2a\right)b=-2a
Combine all terms containing b.
\frac{\left(2-2a\right)b}{2-2a}=-\frac{2a}{2-2a}
Divide both sides by 2-2a.
b=-\frac{2a}{2-2a}
Dividing by 2-2a undoes the multiplication by 2-2a.
b=-\frac{a}{1-a}
Divide -2a by 2-2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}