Solve for a
\left\{\begin{matrix}\\a=4\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=0\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=4\end{matrix}\right.
Share
Copied to clipboard
a^{2}+2ab+b^{2}=a^{2}+8b+b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-a^{2}=8b+b^{2}
Subtract a^{2} from both sides.
2ab+b^{2}=8b+b^{2}
Combine a^{2} and -a^{2} to get 0.
2ab=8b+b^{2}-b^{2}
Subtract b^{2} from both sides.
2ab=8b
Combine b^{2} and -b^{2} to get 0.
2ba=8b
The equation is in standard form.
\frac{2ba}{2b}=\frac{8b}{2b}
Divide both sides by 2b.
a=\frac{8b}{2b}
Dividing by 2b undoes the multiplication by 2b.
a=4
Divide 8b by 2b.
a^{2}+2ab+b^{2}=a^{2}+8b+b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-8b=a^{2}+b^{2}
Subtract 8b from both sides.
a^{2}+2ab+b^{2}-8b-b^{2}=a^{2}
Subtract b^{2} from both sides.
a^{2}+2ab-8b=a^{2}
Combine b^{2} and -b^{2} to get 0.
2ab-8b=a^{2}-a^{2}
Subtract a^{2} from both sides.
2ab-8b=0
Combine a^{2} and -a^{2} to get 0.
\left(2a-8\right)b=0
Combine all terms containing b.
b=0
Divide 0 by 2a-8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}