Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

a+a\sqrt{2}+b\sqrt{2}+b\left(\sqrt{2}\right)^{2}=25+17\sqrt{2}
Use the distributive property to multiply a+b\sqrt{2} by 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}
The square of \sqrt{2} is 2.
a+a\sqrt{2}+b\times 2=25+17\sqrt{2}-b\sqrt{2}
Subtract b\sqrt{2} from both sides.
a+a\sqrt{2}=25+17\sqrt{2}-b\sqrt{2}-b\times 2
Subtract b\times 2 from both sides.
a+a\sqrt{2}=25+17\sqrt{2}-b\sqrt{2}-2b
Multiply -1 and 2 to get -2.
\left(1+\sqrt{2}\right)a=25+17\sqrt{2}-b\sqrt{2}-2b
Combine all terms containing a.
\left(\sqrt{2}+1\right)a=-\sqrt{2}b-2b+17\sqrt{2}+25
The equation is in standard form.
\frac{\left(\sqrt{2}+1\right)a}{\sqrt{2}+1}=\frac{-\sqrt{2}b-2b+17\sqrt{2}+25}{\sqrt{2}+1}
Divide both sides by 1+\sqrt{2}.
a=\frac{-\sqrt{2}b-2b+17\sqrt{2}+25}{\sqrt{2}+1}
Dividing by 1+\sqrt{2} undoes the multiplication by 1+\sqrt{2}.
a=-\sqrt{2}b+8\sqrt{2}+9
Divide 25+17\sqrt{2}-b\sqrt{2}-2b by 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\left(\sqrt{2}\right)^{2}=25+17\sqrt{2}
Use the distributive property to multiply a+b\sqrt{2} by 1+\sqrt{2}.
a+a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}
The square of \sqrt{2} is 2.
a\sqrt{2}+b\sqrt{2}+b\times 2=25+17\sqrt{2}-a
Subtract a from both sides.
b\sqrt{2}+b\times 2=25+17\sqrt{2}-a-a\sqrt{2}
Subtract a\sqrt{2} from both sides.
\sqrt{2}b+2b=-\sqrt{2}a-a+17\sqrt{2}+25
Reorder the terms.
\left(\sqrt{2}+2\right)b=-\sqrt{2}a-a+17\sqrt{2}+25
Combine all terms containing b.
\frac{\left(\sqrt{2}+2\right)b}{\sqrt{2}+2}=\frac{-\sqrt{2}a-a+17\sqrt{2}+25}{\sqrt{2}+2}
Divide both sides by \sqrt{2}+2.
b=\frac{-\sqrt{2}a-a+17\sqrt{2}+25}{\sqrt{2}+2}
Dividing by \sqrt{2}+2 undoes the multiplication by \sqrt{2}+2.
b=\frac{\left(2-\sqrt{2}\right)\left(-\sqrt{2}a-a+17\sqrt{2}+25\right)}{2}
Divide -\sqrt{2}a-a+17\sqrt{2}+25 by \sqrt{2}+2.