Evaluate
-\frac{3a^{4}}{2}+b^{4}+a^{3}
Expand
-\frac{3a^{4}}{2}+b^{4}+a^{3}
Share
Copied to clipboard
a^{3}+3a^{2}b^{2}+3a\left(b^{2}\right)^{2}+\left(b^{2}\right)^{3}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b^{2}\right)^{3}.
a^{3}+3a^{2}b^{2}+3ab^{4}+\left(b^{2}\right)^{3}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{3}{2}+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use the distributive property to multiply 3 by a-\frac{1}{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{3}{2}+b^{2}-1\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Consider \left(b+1\right)\left(b-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{5}{2}+b^{2}\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Subtract 1 from -\frac{3}{2} to get -\frac{5}{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-\left(3b^{4}a-\frac{5}{2}b^{4}+b^{6}\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use the distributive property to multiply b^{4} by 3a-\frac{5}{2}+b^{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-3b^{4}a+\frac{5}{2}b^{4}-b^{6}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To find the opposite of 3b^{4}a-\frac{5}{2}b^{4}+b^{6}, find the opposite of each term.
a^{3}+3a^{2}b^{2}+b^{6}+\frac{5}{2}b^{4}-b^{6}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Combine 3ab^{4} and -3b^{4}a to get 0.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Combine b^{6} and -b^{6} to get 0.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(\left(a^{2}\right)^{2}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+b^{2}\right)^{2}.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{4}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{4}+2a^{2}b^{2}+b^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}a^{4}-3a^{2}b^{2}-\frac{3}{2}b^{4}
Use the distributive property to multiply -\frac{3}{2} by a^{4}+2a^{2}b^{2}+b^{4}.
a^{3}+\frac{5}{2}b^{4}-\frac{3}{2}a^{4}-\frac{3}{2}b^{4}
Combine 3a^{2}b^{2} and -3a^{2}b^{2} to get 0.
a^{3}+b^{4}-\frac{3}{2}a^{4}
Combine \frac{5}{2}b^{4} and -\frac{3}{2}b^{4} to get b^{4}.
a^{3}+3a^{2}b^{2}+3a\left(b^{2}\right)^{2}+\left(b^{2}\right)^{3}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b^{2}\right)^{3}.
a^{3}+3a^{2}b^{2}+3ab^{4}+\left(b^{2}\right)^{3}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{3}{2}+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use the distributive property to multiply 3 by a-\frac{1}{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{3}{2}+b^{2}-1\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Consider \left(b+1\right)\left(b-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{5}{2}+b^{2}\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Subtract 1 from -\frac{3}{2} to get -\frac{5}{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-\left(3b^{4}a-\frac{5}{2}b^{4}+b^{6}\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use the distributive property to multiply b^{4} by 3a-\frac{5}{2}+b^{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-3b^{4}a+\frac{5}{2}b^{4}-b^{6}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To find the opposite of 3b^{4}a-\frac{5}{2}b^{4}+b^{6}, find the opposite of each term.
a^{3}+3a^{2}b^{2}+b^{6}+\frac{5}{2}b^{4}-b^{6}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Combine 3ab^{4} and -3b^{4}a to get 0.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Combine b^{6} and -b^{6} to get 0.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(\left(a^{2}\right)^{2}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+b^{2}\right)^{2}.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{4}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{4}+2a^{2}b^{2}+b^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}a^{4}-3a^{2}b^{2}-\frac{3}{2}b^{4}
Use the distributive property to multiply -\frac{3}{2} by a^{4}+2a^{2}b^{2}+b^{4}.
a^{3}+\frac{5}{2}b^{4}-\frac{3}{2}a^{4}-\frac{3}{2}b^{4}
Combine 3a^{2}b^{2} and -3a^{2}b^{2} to get 0.
a^{3}+b^{4}-\frac{3}{2}a^{4}
Combine \frac{5}{2}b^{4} and -\frac{3}{2}b^{4} to get b^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}