Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{3}+3a^{2}b^{2}+3a\left(b^{2}\right)^{2}+\left(b^{2}\right)^{3}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b^{2}\right)^{3}.
a^{3}+3a^{2}b^{2}+3ab^{4}+\left(b^{2}\right)^{3}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{3}{2}+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use the distributive property to multiply 3 by a-\frac{1}{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{3}{2}+b^{2}-1\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Consider \left(b+1\right)\left(b-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{5}{2}+b^{2}\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Subtract 1 from -\frac{3}{2} to get -\frac{5}{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-\left(3b^{4}a-\frac{5}{2}b^{4}+b^{6}\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use the distributive property to multiply b^{4} by 3a-\frac{5}{2}+b^{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-3b^{4}a+\frac{5}{2}b^{4}-b^{6}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To find the opposite of 3b^{4}a-\frac{5}{2}b^{4}+b^{6}, find the opposite of each term.
a^{3}+3a^{2}b^{2}+b^{6}+\frac{5}{2}b^{4}-b^{6}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Combine 3ab^{4} and -3b^{4}a to get 0.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Combine b^{6} and -b^{6} to get 0.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(\left(a^{2}\right)^{2}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+b^{2}\right)^{2}.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{4}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{4}+2a^{2}b^{2}+b^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}a^{4}-3a^{2}b^{2}-\frac{3}{2}b^{4}
Use the distributive property to multiply -\frac{3}{2} by a^{4}+2a^{2}b^{2}+b^{4}.
a^{3}+\frac{5}{2}b^{4}-\frac{3}{2}a^{4}-\frac{3}{2}b^{4}
Combine 3a^{2}b^{2} and -3a^{2}b^{2} to get 0.
a^{3}+b^{4}-\frac{3}{2}a^{4}
Combine \frac{5}{2}b^{4} and -\frac{3}{2}b^{4} to get b^{4}.
a^{3}+3a^{2}b^{2}+3a\left(b^{2}\right)^{2}+\left(b^{2}\right)^{3}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b^{2}\right)^{3}.
a^{3}+3a^{2}b^{2}+3ab^{4}+\left(b^{2}\right)^{3}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3\left(a-\frac{1}{2}\right)+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{3}{2}+\left(b+1\right)\left(b-1\right)\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use the distributive property to multiply 3 by a-\frac{1}{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{3}{2}+b^{2}-1\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Consider \left(b+1\right)\left(b-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-b^{4}\left(3a-\frac{5}{2}+b^{2}\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Subtract 1 from -\frac{3}{2} to get -\frac{5}{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-\left(3b^{4}a-\frac{5}{2}b^{4}+b^{6}\right)-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Use the distributive property to multiply b^{4} by 3a-\frac{5}{2}+b^{2}.
a^{3}+3a^{2}b^{2}+3ab^{4}+b^{6}-3b^{4}a+\frac{5}{2}b^{4}-b^{6}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
To find the opposite of 3b^{4}a-\frac{5}{2}b^{4}+b^{6}, find the opposite of each term.
a^{3}+3a^{2}b^{2}+b^{6}+\frac{5}{2}b^{4}-b^{6}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Combine 3ab^{4} and -3b^{4}a to get 0.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{2}+b^{2}\right)^{2}
Combine b^{6} and -b^{6} to get 0.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(\left(a^{2}\right)^{2}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a^{2}+b^{2}\right)^{2}.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{4}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}\left(a^{4}+2a^{2}b^{2}+b^{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
a^{3}+3a^{2}b^{2}+\frac{5}{2}b^{4}-\frac{3}{2}a^{4}-3a^{2}b^{2}-\frac{3}{2}b^{4}
Use the distributive property to multiply -\frac{3}{2} by a^{4}+2a^{2}b^{2}+b^{4}.
a^{3}+\frac{5}{2}b^{4}-\frac{3}{2}a^{4}-\frac{3}{2}b^{4}
Combine 3a^{2}b^{2} and -3a^{2}b^{2} to get 0.
a^{3}+b^{4}-\frac{3}{2}a^{4}
Combine \frac{5}{2}b^{4} and -\frac{3}{2}b^{4} to get b^{4}.