Evaluate
\left(a+4\right)^{2}+a^{2}-64
Expand
2a^{2}+8a-48
Share
Copied to clipboard
a^{2}-64+\left(a+4\right)^{2}
Consider \left(a+8\right)\left(a-8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
a^{2}-64+a^{2}+8a+16
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+4\right)^{2}.
2a^{2}-64+8a+16
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-48+8a
Add -64 and 16 to get -48.
a^{2}-64+\left(a+4\right)^{2}
Consider \left(a+8\right)\left(a-8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
a^{2}-64+a^{2}+8a+16
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+4\right)^{2}.
2a^{2}-64+8a+16
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-48+8a
Add -64 and 16 to get -48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}