Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-64+\left(a+4\right)^{2}
Consider \left(a+8\right)\left(a-8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
a^{2}-64+a^{2}+8a+16
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+4\right)^{2}.
2a^{2}-64+8a+16
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-48+8a
Add -64 and 16 to get -48.
a^{2}-64+\left(a+4\right)^{2}
Consider \left(a+8\right)\left(a-8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
a^{2}-64+a^{2}+8a+16
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+4\right)^{2}.
2a^{2}-64+8a+16
Combine a^{2} and a^{2} to get 2a^{2}.
2a^{2}-48+8a
Add -64 and 16 to get -48.