Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-5a^{2}-22a+15=-63^{2}
Use the distributive property to multiply a+5 by -5a+3 and combine like terms.
-5a^{2}-22a+15=-3969
Calculate 63 to the power of 2 and get 3969.
-5a^{2}-22a+15+3969=0
Add 3969 to both sides.
-5a^{2}-22a+3984=0
Add 15 and 3969 to get 3984.
a=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-5\right)\times 3984}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -22 for b, and 3984 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-22\right)±\sqrt{484-4\left(-5\right)\times 3984}}{2\left(-5\right)}
Square -22.
a=\frac{-\left(-22\right)±\sqrt{484+20\times 3984}}{2\left(-5\right)}
Multiply -4 times -5.
a=\frac{-\left(-22\right)±\sqrt{484+79680}}{2\left(-5\right)}
Multiply 20 times 3984.
a=\frac{-\left(-22\right)±\sqrt{80164}}{2\left(-5\right)}
Add 484 to 79680.
a=\frac{-\left(-22\right)±14\sqrt{409}}{2\left(-5\right)}
Take the square root of 80164.
a=\frac{22±14\sqrt{409}}{2\left(-5\right)}
The opposite of -22 is 22.
a=\frac{22±14\sqrt{409}}{-10}
Multiply 2 times -5.
a=\frac{14\sqrt{409}+22}{-10}
Now solve the equation a=\frac{22±14\sqrt{409}}{-10} when ± is plus. Add 22 to 14\sqrt{409}.
a=\frac{-7\sqrt{409}-11}{5}
Divide 22+14\sqrt{409} by -10.
a=\frac{22-14\sqrt{409}}{-10}
Now solve the equation a=\frac{22±14\sqrt{409}}{-10} when ± is minus. Subtract 14\sqrt{409} from 22.
a=\frac{7\sqrt{409}-11}{5}
Divide 22-14\sqrt{409} by -10.
a=\frac{-7\sqrt{409}-11}{5} a=\frac{7\sqrt{409}-11}{5}
The equation is now solved.
-5a^{2}-22a+15=-63^{2}
Use the distributive property to multiply a+5 by -5a+3 and combine like terms.
-5a^{2}-22a+15=-3969
Calculate 63 to the power of 2 and get 3969.
-5a^{2}-22a=-3969-15
Subtract 15 from both sides.
-5a^{2}-22a=-3984
Subtract 15 from -3969 to get -3984.
\frac{-5a^{2}-22a}{-5}=-\frac{3984}{-5}
Divide both sides by -5.
a^{2}+\left(-\frac{22}{-5}\right)a=-\frac{3984}{-5}
Dividing by -5 undoes the multiplication by -5.
a^{2}+\frac{22}{5}a=-\frac{3984}{-5}
Divide -22 by -5.
a^{2}+\frac{22}{5}a=\frac{3984}{5}
Divide -3984 by -5.
a^{2}+\frac{22}{5}a+\left(\frac{11}{5}\right)^{2}=\frac{3984}{5}+\left(\frac{11}{5}\right)^{2}
Divide \frac{22}{5}, the coefficient of the x term, by 2 to get \frac{11}{5}. Then add the square of \frac{11}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{22}{5}a+\frac{121}{25}=\frac{3984}{5}+\frac{121}{25}
Square \frac{11}{5} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{22}{5}a+\frac{121}{25}=\frac{20041}{25}
Add \frac{3984}{5} to \frac{121}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{11}{5}\right)^{2}=\frac{20041}{25}
Factor a^{2}+\frac{22}{5}a+\frac{121}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{11}{5}\right)^{2}}=\sqrt{\frac{20041}{25}}
Take the square root of both sides of the equation.
a+\frac{11}{5}=\frac{7\sqrt{409}}{5} a+\frac{11}{5}=-\frac{7\sqrt{409}}{5}
Simplify.
a=\frac{7\sqrt{409}-11}{5} a=\frac{-7\sqrt{409}-11}{5}
Subtract \frac{11}{5} from both sides of the equation.