Solve for a (complex solution)
\left\{\begin{matrix}\\a=\frac{3d}{2}\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=\frac{3d}{2}\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Solve for d
d=\frac{2a}{3}
d=0
Share
Copied to clipboard
a^{2}+6ad+9d^{2}=a\left(a+12d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+3d\right)^{2}.
a^{2}+6ad+9d^{2}=a^{2}+12ad
Use the distributive property to multiply a by a+12d.
a^{2}+6ad+9d^{2}-a^{2}=12ad
Subtract a^{2} from both sides.
6ad+9d^{2}=12ad
Combine a^{2} and -a^{2} to get 0.
6ad+9d^{2}-12ad=0
Subtract 12ad from both sides.
-6ad+9d^{2}=0
Combine 6ad and -12ad to get -6ad.
-6ad=-9d^{2}
Subtract 9d^{2} from both sides. Anything subtracted from zero gives its negation.
\left(-6d\right)a=-9d^{2}
The equation is in standard form.
\frac{\left(-6d\right)a}{-6d}=-\frac{9d^{2}}{-6d}
Divide both sides by -6d.
a=-\frac{9d^{2}}{-6d}
Dividing by -6d undoes the multiplication by -6d.
a=\frac{3d}{2}
Divide -9d^{2} by -6d.
a^{2}+6ad+9d^{2}=a\left(a+12d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+3d\right)^{2}.
a^{2}+6ad+9d^{2}=a^{2}+12ad
Use the distributive property to multiply a by a+12d.
a^{2}+6ad+9d^{2}-a^{2}=12ad
Subtract a^{2} from both sides.
6ad+9d^{2}=12ad
Combine a^{2} and -a^{2} to get 0.
6ad+9d^{2}-12ad=0
Subtract 12ad from both sides.
-6ad+9d^{2}=0
Combine 6ad and -12ad to get -6ad.
-6ad=-9d^{2}
Subtract 9d^{2} from both sides. Anything subtracted from zero gives its negation.
\left(-6d\right)a=-9d^{2}
The equation is in standard form.
\frac{\left(-6d\right)a}{-6d}=-\frac{9d^{2}}{-6d}
Divide both sides by -6d.
a=-\frac{9d^{2}}{-6d}
Dividing by -6d undoes the multiplication by -6d.
a=\frac{3d}{2}
Divide -9d^{2} by -6d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}