Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+6a+9-\left(a-1\right)\left(a+1\right)-2\left(2a+4\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+3\right)^{2}.
a^{2}+6a+9-\left(a^{2}-1\right)-2\left(2a+4\right)
Consider \left(a-1\right)\left(a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{2}+6a+9-a^{2}+1-2\left(2a+4\right)
To find the opposite of a^{2}-1, find the opposite of each term.
6a+9+1-2\left(2a+4\right)
Combine a^{2} and -a^{2} to get 0.
6a+10-2\left(2a+4\right)
Add 9 and 1 to get 10.
6a+10-4a-8
Use the distributive property to multiply -2 by 2a+4.
2a+10-8
Combine 6a and -4a to get 2a.
2a+2
Subtract 8 from 10 to get 2.
a^{2}+6a+9-\left(a-1\right)\left(a+1\right)-2\left(2a+4\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+3\right)^{2}.
a^{2}+6a+9-\left(a^{2}-1\right)-2\left(2a+4\right)
Consider \left(a-1\right)\left(a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
a^{2}+6a+9-a^{2}+1-2\left(2a+4\right)
To find the opposite of a^{2}-1, find the opposite of each term.
6a+9+1-2\left(2a+4\right)
Combine a^{2} and -a^{2} to get 0.
6a+10-2\left(2a+4\right)
Add 9 and 1 to get 10.
6a+10-4a-8
Use the distributive property to multiply -2 by 2a+4.
2a+10-8
Combine 6a and -4a to get 2a.
2a+2
Subtract 8 from 10 to get 2.