Solve for a
a=\frac{-5\sqrt{2}\left(b-11\right)-8b+95}{7}
Solve for b
b=\frac{5\sqrt{2}a}{2}-4a-\frac{5\sqrt{2}}{2}+15
Share
Copied to clipboard
5a-4a\sqrt{2}+15\sqrt{2}-12\left(\sqrt{2}\right)^{2}=b\sqrt{2}-19
Use the distributive property to multiply a+3\sqrt{2} by 5-4\sqrt{2}.
5a-4a\sqrt{2}+15\sqrt{2}-12\times 2=b\sqrt{2}-19
The square of \sqrt{2} is 2.
5a-4a\sqrt{2}+15\sqrt{2}-24=b\sqrt{2}-19
Multiply -12 and 2 to get -24.
5a-4a\sqrt{2}-24=b\sqrt{2}-19-15\sqrt{2}
Subtract 15\sqrt{2} from both sides.
5a-4a\sqrt{2}=b\sqrt{2}-19-15\sqrt{2}+24
Add 24 to both sides.
5a-4a\sqrt{2}=b\sqrt{2}+5-15\sqrt{2}
Add -19 and 24 to get 5.
\left(5-4\sqrt{2}\right)a=b\sqrt{2}+5-15\sqrt{2}
Combine all terms containing a.
\left(5-4\sqrt{2}\right)a=\sqrt{2}b+5-15\sqrt{2}
The equation is in standard form.
\frac{\left(5-4\sqrt{2}\right)a}{5-4\sqrt{2}}=\frac{\sqrt{2}b+5-15\sqrt{2}}{5-4\sqrt{2}}
Divide both sides by 5-4\sqrt{2}.
a=\frac{\sqrt{2}b+5-15\sqrt{2}}{5-4\sqrt{2}}
Dividing by 5-4\sqrt{2} undoes the multiplication by 5-4\sqrt{2}.
a=\frac{-5\sqrt{2}b-8b+55\sqrt{2}+95}{7}
Divide b\sqrt{2}+5-15\sqrt{2} by 5-4\sqrt{2}.
5a-4a\sqrt{2}+15\sqrt{2}-12\left(\sqrt{2}\right)^{2}=b\sqrt{2}-19
Use the distributive property to multiply a+3\sqrt{2} by 5-4\sqrt{2}.
5a-4a\sqrt{2}+15\sqrt{2}-12\times 2=b\sqrt{2}-19
The square of \sqrt{2} is 2.
5a-4a\sqrt{2}+15\sqrt{2}-24=b\sqrt{2}-19
Multiply -12 and 2 to get -24.
b\sqrt{2}-19=5a-4a\sqrt{2}+15\sqrt{2}-24
Swap sides so that all variable terms are on the left hand side.
b\sqrt{2}=5a-4a\sqrt{2}+15\sqrt{2}-24+19
Add 19 to both sides.
b\sqrt{2}=5a-4a\sqrt{2}+15\sqrt{2}-5
Add -24 and 19 to get -5.
\sqrt{2}b=-4\sqrt{2}a+5a+15\sqrt{2}-5
The equation is in standard form.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-4\sqrt{2}a+5a+15\sqrt{2}-5}{\sqrt{2}}
Divide both sides by \sqrt{2}.
b=\frac{-4\sqrt{2}a+5a+15\sqrt{2}-5}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
b=\frac{5\sqrt{2}a}{2}-4a-\frac{5\sqrt{2}}{2}+15
Divide 5a-4a\sqrt{2}+15\sqrt{2}-5 by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}