Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

ab-3a^{2}+2b^{2}-6ba-\left(2a-b\right)\left(b-a\right)
Apply the distributive property by multiplying each term of a+2b by each term of b-3a.
-5ab-3a^{2}+2b^{2}-\left(2a-b\right)\left(b-a\right)
Combine ab and -6ba to get -5ab.
-5ab-3a^{2}+2b^{2}-\left(2ab-2a^{2}-b^{2}+ba\right)
Apply the distributive property by multiplying each term of 2a-b by each term of b-a.
-5ab-3a^{2}+2b^{2}-\left(3ab-2a^{2}-b^{2}\right)
Combine 2ab and ba to get 3ab.
-5ab-3a^{2}+2b^{2}-3ab-\left(-2a^{2}\right)-\left(-b^{2}\right)
To find the opposite of 3ab-2a^{2}-b^{2}, find the opposite of each term.
-5ab-3a^{2}+2b^{2}-3ab+2a^{2}-\left(-b^{2}\right)
The opposite of -2a^{2} is 2a^{2}.
-5ab-3a^{2}+2b^{2}-3ab+2a^{2}+b^{2}
The opposite of -b^{2} is b^{2}.
-8ab-3a^{2}+2b^{2}+2a^{2}+b^{2}
Combine -5ab and -3ab to get -8ab.
-8ab-a^{2}+2b^{2}+b^{2}
Combine -3a^{2} and 2a^{2} to get -a^{2}.
-8ab-a^{2}+3b^{2}
Combine 2b^{2} and b^{2} to get 3b^{2}.
ab-3a^{2}+2b^{2}-6ba-\left(2a-b\right)\left(b-a\right)
Apply the distributive property by multiplying each term of a+2b by each term of b-3a.
-5ab-3a^{2}+2b^{2}-\left(2a-b\right)\left(b-a\right)
Combine ab and -6ba to get -5ab.
-5ab-3a^{2}+2b^{2}-\left(2ab-2a^{2}-b^{2}+ba\right)
Apply the distributive property by multiplying each term of 2a-b by each term of b-a.
-5ab-3a^{2}+2b^{2}-\left(3ab-2a^{2}-b^{2}\right)
Combine 2ab and ba to get 3ab.
-5ab-3a^{2}+2b^{2}-3ab-\left(-2a^{2}\right)-\left(-b^{2}\right)
To find the opposite of 3ab-2a^{2}-b^{2}, find the opposite of each term.
-5ab-3a^{2}+2b^{2}-3ab+2a^{2}-\left(-b^{2}\right)
The opposite of -2a^{2} is 2a^{2}.
-5ab-3a^{2}+2b^{2}-3ab+2a^{2}+b^{2}
The opposite of -b^{2} is b^{2}.
-8ab-3a^{2}+2b^{2}+2a^{2}+b^{2}
Combine -5ab and -3ab to get -8ab.
-8ab-a^{2}+2b^{2}+b^{2}
Combine -3a^{2} and 2a^{2} to get -a^{2}.
-8ab-a^{2}+3b^{2}
Combine 2b^{2} and b^{2} to get 3b^{2}.