Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

a+2b-3ia-5ib=3-7i
Use the distributive property to multiply -3a-5b by i.
\left(1-3i\right)a+2b-5ib=3-7i
Combine a and -3ia to get \left(1-3i\right)a.
\left(1-3i\right)a+\left(2-5i\right)b=3-7i
Combine 2b and -5ib to get \left(2-5i\right)b.
\left(1-3i\right)a=3-7i-\left(2-5i\right)b
Subtract \left(2-5i\right)b from both sides.
\left(1-3i\right)a=3-7i+\left(-2+5i\right)b
Multiply -1 and 2-5i to get -2+5i.
\left(1-3i\right)a=\left(-2+5i\right)b+\left(3-7i\right)
The equation is in standard form.
\frac{\left(1-3i\right)a}{1-3i}=\frac{\left(-2+5i\right)b+\left(3-7i\right)}{1-3i}
Divide both sides by 1-3i.
a=\frac{\left(-2+5i\right)b+\left(3-7i\right)}{1-3i}
Dividing by 1-3i undoes the multiplication by 1-3i.
a=\left(-\frac{17}{10}-\frac{1}{10}i\right)b+\left(\frac{12}{5}+\frac{1}{5}i\right)
Divide 3-7i+\left(-2+5i\right)b by 1-3i.
a+2b-3ia-5ib=3-7i
Use the distributive property to multiply -3a-5b by i.
\left(1-3i\right)a+2b-5ib=3-7i
Combine a and -3ia to get \left(1-3i\right)a.
\left(1-3i\right)a+\left(2-5i\right)b=3-7i
Combine 2b and -5ib to get \left(2-5i\right)b.
\left(2-5i\right)b=3-7i-\left(1-3i\right)a
Subtract \left(1-3i\right)a from both sides.
\left(2-5i\right)b=3-7i+\left(-1+3i\right)a
Multiply -1 and 1-3i to get -1+3i.
\left(2-5i\right)b=\left(-1+3i\right)a+\left(3-7i\right)
The equation is in standard form.
\frac{\left(2-5i\right)b}{2-5i}=\frac{\left(-1+3i\right)a+\left(3-7i\right)}{2-5i}
Divide both sides by 2-5i.
b=\frac{\left(-1+3i\right)a+\left(3-7i\right)}{2-5i}
Dividing by 2-5i undoes the multiplication by 2-5i.
b=\left(-\frac{17}{29}+\frac{1}{29}i\right)a+\left(\frac{41}{29}+\frac{1}{29}i\right)
Divide 3-7i+\left(-1+3i\right)a by 2-5i.