Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}+8a-48=2a\left(a-4\right)
Use the distributive property to multiply a+12 by a-4 and combine like terms.
a^{2}+8a-48=2a^{2}-8a
Use the distributive property to multiply 2a by a-4.
a^{2}+8a-48-2a^{2}=-8a
Subtract 2a^{2} from both sides.
-a^{2}+8a-48=-8a
Combine a^{2} and -2a^{2} to get -a^{2}.
-a^{2}+8a-48+8a=0
Add 8a to both sides.
-a^{2}+16a-48=0
Combine 8a and 8a to get 16a.
a+b=16 ab=-\left(-48\right)=48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -a^{2}+aa+ba-48. To find a and b, set up a system to be solved.
1,48 2,24 3,16 4,12 6,8
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 48.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
Calculate the sum for each pair.
a=12 b=4
The solution is the pair that gives sum 16.
\left(-a^{2}+12a\right)+\left(4a-48\right)
Rewrite -a^{2}+16a-48 as \left(-a^{2}+12a\right)+\left(4a-48\right).
-a\left(a-12\right)+4\left(a-12\right)
Factor out -a in the first and 4 in the second group.
\left(a-12\right)\left(-a+4\right)
Factor out common term a-12 by using distributive property.
a=12 a=4
To find equation solutions, solve a-12=0 and -a+4=0.
a^{2}+8a-48=2a\left(a-4\right)
Use the distributive property to multiply a+12 by a-4 and combine like terms.
a^{2}+8a-48=2a^{2}-8a
Use the distributive property to multiply 2a by a-4.
a^{2}+8a-48-2a^{2}=-8a
Subtract 2a^{2} from both sides.
-a^{2}+8a-48=-8a
Combine a^{2} and -2a^{2} to get -a^{2}.
-a^{2}+8a-48+8a=0
Add 8a to both sides.
-a^{2}+16a-48=0
Combine 8a and 8a to get 16a.
a=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 16 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-16±\sqrt{256-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
Square 16.
a=\frac{-16±\sqrt{256+4\left(-48\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-16±\sqrt{256-192}}{2\left(-1\right)}
Multiply 4 times -48.
a=\frac{-16±\sqrt{64}}{2\left(-1\right)}
Add 256 to -192.
a=\frac{-16±8}{2\left(-1\right)}
Take the square root of 64.
a=\frac{-16±8}{-2}
Multiply 2 times -1.
a=-\frac{8}{-2}
Now solve the equation a=\frac{-16±8}{-2} when ± is plus. Add -16 to 8.
a=4
Divide -8 by -2.
a=-\frac{24}{-2}
Now solve the equation a=\frac{-16±8}{-2} when ± is minus. Subtract 8 from -16.
a=12
Divide -24 by -2.
a=4 a=12
The equation is now solved.
a^{2}+8a-48=2a\left(a-4\right)
Use the distributive property to multiply a+12 by a-4 and combine like terms.
a^{2}+8a-48=2a^{2}-8a
Use the distributive property to multiply 2a by a-4.
a^{2}+8a-48-2a^{2}=-8a
Subtract 2a^{2} from both sides.
-a^{2}+8a-48=-8a
Combine a^{2} and -2a^{2} to get -a^{2}.
-a^{2}+8a-48+8a=0
Add 8a to both sides.
-a^{2}+16a-48=0
Combine 8a and 8a to get 16a.
-a^{2}+16a=48
Add 48 to both sides. Anything plus zero gives itself.
\frac{-a^{2}+16a}{-1}=\frac{48}{-1}
Divide both sides by -1.
a^{2}+\frac{16}{-1}a=\frac{48}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-16a=\frac{48}{-1}
Divide 16 by -1.
a^{2}-16a=-48
Divide 48 by -1.
a^{2}-16a+\left(-8\right)^{2}=-48+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-16a+64=-48+64
Square -8.
a^{2}-16a+64=16
Add -48 to 64.
\left(a-8\right)^{2}=16
Factor a^{2}-16a+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-8\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
a-8=4 a-8=-4
Simplify.
a=12 a=4
Add 8 to both sides of the equation.