Solve for a
a=d^{2}+d-10
Solve for d (complex solution)
d=\frac{\sqrt{4a+41}-1}{2}
d=\frac{-\sqrt{4a+41}-1}{2}
Solve for d
d=\frac{\sqrt{4a+41}-1}{2}
d=\frac{-\sqrt{4a+41}-1}{2}\text{, }a\geq -\frac{41}{4}
Share
Copied to clipboard
a^{2}+20a+100=\left(a-d+10\right)\left(a+d+11\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+10\right)^{2}.
a^{2}+20a+100=a^{2}+21a-d^{2}-d+110
Use the distributive property to multiply a-d+10 by a+d+11 and combine like terms.
a^{2}+20a+100-a^{2}=21a-d^{2}-d+110
Subtract a^{2} from both sides.
20a+100=21a-d^{2}-d+110
Combine a^{2} and -a^{2} to get 0.
20a+100-21a=-d^{2}-d+110
Subtract 21a from both sides.
-a+100=-d^{2}-d+110
Combine 20a and -21a to get -a.
-a=-d^{2}-d+110-100
Subtract 100 from both sides.
-a=-d^{2}-d+10
Subtract 100 from 110 to get 10.
-a=10-d-d^{2}
The equation is in standard form.
\frac{-a}{-1}=\frac{10-d-d^{2}}{-1}
Divide both sides by -1.
a=\frac{10-d-d^{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
a=d^{2}+d-10
Divide -d^{2}-d+10 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}