Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a+1\right)\left(a-1\right)}{a-1}-\frac{3}{a-1}-\frac{a-2}{2a-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a+1 times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a-1\right)-3}{a-1}-\frac{a-2}{2a-2}
Since \frac{\left(a+1\right)\left(a-1\right)}{a-1} and \frac{3}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a+a-1-3}{a-1}-\frac{a-2}{2a-2}
Do the multiplications in \left(a+1\right)\left(a-1\right)-3.
\frac{a^{2}-4}{a-1}-\frac{a-2}{2a-2}
Combine like terms in a^{2}-a+a-1-3.
\frac{a^{2}-4}{a-1}-\frac{a-2}{2\left(a-1\right)}
Factor 2a-2.
\frac{2\left(a^{2}-4\right)}{2\left(a-1\right)}-\frac{a-2}{2\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and 2\left(a-1\right) is 2\left(a-1\right). Multiply \frac{a^{2}-4}{a-1} times \frac{2}{2}.
\frac{2\left(a^{2}-4\right)-\left(a-2\right)}{2\left(a-1\right)}
Since \frac{2\left(a^{2}-4\right)}{2\left(a-1\right)} and \frac{a-2}{2\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{2}-8-a+2}{2\left(a-1\right)}
Do the multiplications in 2\left(a^{2}-4\right)-\left(a-2\right).
\frac{2a^{2}-6-a}{2\left(a-1\right)}
Combine like terms in 2a^{2}-8-a+2.
\frac{2a^{2}-6-a}{2a-2}
Expand 2\left(a-1\right).
\frac{\left(a+1\right)\left(a-1\right)}{a-1}-\frac{3}{a-1}-\frac{a-2}{2a-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a+1 times \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a-1\right)-3}{a-1}-\frac{a-2}{2a-2}
Since \frac{\left(a+1\right)\left(a-1\right)}{a-1} and \frac{3}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a+a-1-3}{a-1}-\frac{a-2}{2a-2}
Do the multiplications in \left(a+1\right)\left(a-1\right)-3.
\frac{a^{2}-4}{a-1}-\frac{a-2}{2a-2}
Combine like terms in a^{2}-a+a-1-3.
\frac{a^{2}-4}{a-1}-\frac{a-2}{2\left(a-1\right)}
Factor 2a-2.
\frac{2\left(a^{2}-4\right)}{2\left(a-1\right)}-\frac{a-2}{2\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and 2\left(a-1\right) is 2\left(a-1\right). Multiply \frac{a^{2}-4}{a-1} times \frac{2}{2}.
\frac{2\left(a^{2}-4\right)-\left(a-2\right)}{2\left(a-1\right)}
Since \frac{2\left(a^{2}-4\right)}{2\left(a-1\right)} and \frac{a-2}{2\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{2}-8-a+2}{2\left(a-1\right)}
Do the multiplications in 2\left(a^{2}-4\right)-\left(a-2\right).
\frac{2a^{2}-6-a}{2\left(a-1\right)}
Combine like terms in 2a^{2}-8-a+2.
\frac{2a^{2}-6-a}{2a-2}
Expand 2\left(a-1\right).