Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}-a\right)^{2}
Consider \left(a+\sqrt{5}\right)\left(a-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-5-\left(\sqrt{3}-a\right)^{2}
The square of \sqrt{5} is 5.
a^{2}-5-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}a+a^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\sqrt{3}-a\right)^{2}.
a^{2}-5-\left(3-2\sqrt{3}a+a^{2}\right)
The square of \sqrt{3} is 3.
a^{2}-5-3+2\sqrt{3}a-a^{2}
To find the opposite of 3-2\sqrt{3}a+a^{2}, find the opposite of each term.
a^{2}-8+2\sqrt{3}a-a^{2}
Subtract 3 from -5 to get -8.
-8+2\sqrt{3}a
Combine a^{2} and -a^{2} to get 0.