Evaluate
2\left(\sqrt{3}a-4\right)
Differentiate w.r.t. a
2 \sqrt{3} = 3.464101615
Quiz
Algebra
5 problems similar to:
( a + \sqrt { 5 } ) ( a - \sqrt { 5 } ) - ( \sqrt { 3 } - a ) ^ { 2 }
Share
Copied to clipboard
a^{2}-\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}-a\right)^{2}
Consider \left(a+\sqrt{5}\right)\left(a-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-5-\left(\sqrt{3}-a\right)^{2}
The square of \sqrt{5} is 5.
a^{2}-5-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}a+a^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\sqrt{3}-a\right)^{2}.
a^{2}-5-\left(3-2\sqrt{3}a+a^{2}\right)
The square of \sqrt{3} is 3.
a^{2}-5-3+2\sqrt{3}a-a^{2}
To find the opposite of 3-2\sqrt{3}a+a^{2}, find the opposite of each term.
a^{2}-8+2\sqrt{3}a-a^{2}
Subtract 3 from -5 to get -8.
-8+2\sqrt{3}a
Combine a^{2} and -a^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}