Evaluate
a
Differentiate w.r.t. a
1
Share
Copied to clipboard
\frac{\frac{a\left(a-b\right)}{a-b}+\frac{2ab}{a-b}}{\frac{a+b}{a-b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a-b}{a-b}.
\frac{\frac{a\left(a-b\right)+2ab}{a-b}}{\frac{a+b}{a-b}}
Since \frac{a\left(a-b\right)}{a-b} and \frac{2ab}{a-b} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}-ab+2ab}{a-b}}{\frac{a+b}{a-b}}
Do the multiplications in a\left(a-b\right)+2ab.
\frac{\frac{a^{2}+ab}{a-b}}{\frac{a+b}{a-b}}
Combine like terms in a^{2}-ab+2ab.
\frac{\left(a^{2}+ab\right)\left(a-b\right)}{\left(a-b\right)\left(a+b\right)}
Divide \frac{a^{2}+ab}{a-b} by \frac{a+b}{a-b} by multiplying \frac{a^{2}+ab}{a-b} by the reciprocal of \frac{a+b}{a-b}.
\frac{a^{2}+ab}{a+b}
Cancel out a-b in both numerator and denominator.
\frac{a\left(a+b\right)}{a+b}
Factor the expressions that are not already factored.
a
Cancel out a+b in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a\left(a-b\right)}{a-b}+\frac{2ab}{a-b}}{\frac{a+b}{a-b}})
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a-b}{a-b}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a\left(a-b\right)+2ab}{a-b}}{\frac{a+b}{a-b}})
Since \frac{a\left(a-b\right)}{a-b} and \frac{2ab}{a-b} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{2}-ab+2ab}{a-b}}{\frac{a+b}{a-b}})
Do the multiplications in a\left(a-b\right)+2ab.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\frac{a^{2}+ab}{a-b}}{\frac{a+b}{a-b}})
Combine like terms in a^{2}-ab+2ab.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a^{2}+ab\right)\left(a-b\right)}{\left(a-b\right)\left(a+b\right)})
Divide \frac{a^{2}+ab}{a-b} by \frac{a+b}{a-b} by multiplying \frac{a^{2}+ab}{a-b} by the reciprocal of \frac{a+b}{a-b}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+ab}{a+b})
Cancel out a-b in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+b\right)}{a+b})
Factor the expressions that are not already factored in \frac{a^{2}+ab}{a+b}.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Cancel out a+b in both numerator and denominator.
a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
a^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}