Evaluate
a = \frac{1}{3} = 0.3333333333333333
Expand
a = \frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\left(a+\frac{2\times 3a}{9a}+\frac{1}{9a}\right)\times \frac{3a}{3a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 9a is 9a. Multiply \frac{2}{3} times \frac{3a}{3a}.
\left(a+\frac{2\times 3a+1}{9a}\right)\times \frac{3a}{3a+1}
Since \frac{2\times 3a}{9a} and \frac{1}{9a} have the same denominator, add them by adding their numerators.
\left(a+\frac{6a+1}{9a}\right)\times \frac{3a}{3a+1}
Do the multiplications in 2\times 3a+1.
\left(\frac{a\times 9a}{9a}+\frac{6a+1}{9a}\right)\times \frac{3a}{3a+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{9a}{9a}.
\frac{a\times 9a+6a+1}{9a}\times \frac{3a}{3a+1}
Since \frac{a\times 9a}{9a} and \frac{6a+1}{9a} have the same denominator, add them by adding their numerators.
\frac{9a^{2}+6a+1}{9a}\times \frac{3a}{3a+1}
Do the multiplications in a\times 9a+6a+1.
\frac{\left(9a^{2}+6a+1\right)\times 3a}{9a\left(3a+1\right)}
Multiply \frac{9a^{2}+6a+1}{9a} times \frac{3a}{3a+1} by multiplying numerator times numerator and denominator times denominator.
\frac{9a^{2}+6a+1}{3\left(3a+1\right)}
Cancel out 3a in both numerator and denominator.
\frac{\left(3a+1\right)^{2}}{3\left(3a+1\right)}
Factor the expressions that are not already factored.
\frac{3a+1}{3}
Cancel out 3a+1 in both numerator and denominator.
\left(a+\frac{2\times 3a}{9a}+\frac{1}{9a}\right)\times \frac{3a}{3a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 9a is 9a. Multiply \frac{2}{3} times \frac{3a}{3a}.
\left(a+\frac{2\times 3a+1}{9a}\right)\times \frac{3a}{3a+1}
Since \frac{2\times 3a}{9a} and \frac{1}{9a} have the same denominator, add them by adding their numerators.
\left(a+\frac{6a+1}{9a}\right)\times \frac{3a}{3a+1}
Do the multiplications in 2\times 3a+1.
\left(\frac{a\times 9a}{9a}+\frac{6a+1}{9a}\right)\times \frac{3a}{3a+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{9a}{9a}.
\frac{a\times 9a+6a+1}{9a}\times \frac{3a}{3a+1}
Since \frac{a\times 9a}{9a} and \frac{6a+1}{9a} have the same denominator, add them by adding their numerators.
\frac{9a^{2}+6a+1}{9a}\times \frac{3a}{3a+1}
Do the multiplications in a\times 9a+6a+1.
\frac{\left(9a^{2}+6a+1\right)\times 3a}{9a\left(3a+1\right)}
Multiply \frac{9a^{2}+6a+1}{9a} times \frac{3a}{3a+1} by multiplying numerator times numerator and denominator times denominator.
\frac{9a^{2}+6a+1}{3\left(3a+1\right)}
Cancel out 3a in both numerator and denominator.
\frac{\left(3a+1\right)^{2}}{3\left(3a+1\right)}
Factor the expressions that are not already factored.
\frac{3a+1}{3}
Cancel out 3a+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}