Evaluate
1+\frac{1}{a}
Expand
1+\frac{1}{a}
Quiz
Polynomial
5 problems similar to:
( a + \frac { 1 } { a ^ { 2 } } ) : ( a - 1 + \frac { 1 } { a } )
Share
Copied to clipboard
\frac{\frac{aa^{2}}{a^{2}}+\frac{1}{a^{2}}}{a-1+\frac{1}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a^{2}}{a^{2}}.
\frac{\frac{aa^{2}+1}{a^{2}}}{a-1+\frac{1}{a}}
Since \frac{aa^{2}}{a^{2}} and \frac{1}{a^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{3}+1}{a^{2}}}{a-1+\frac{1}{a}}
Do the multiplications in aa^{2}+1.
\frac{\frac{a^{3}+1}{a^{2}}}{\frac{\left(a-1\right)a}{a}+\frac{1}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-1 times \frac{a}{a}.
\frac{\frac{a^{3}+1}{a^{2}}}{\frac{\left(a-1\right)a+1}{a}}
Since \frac{\left(a-1\right)a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{3}+1}{a^{2}}}{\frac{a^{2}-a+1}{a}}
Do the multiplications in \left(a-1\right)a+1.
\frac{\left(a^{3}+1\right)a}{a^{2}\left(a^{2}-a+1\right)}
Divide \frac{a^{3}+1}{a^{2}} by \frac{a^{2}-a+1}{a} by multiplying \frac{a^{3}+1}{a^{2}} by the reciprocal of \frac{a^{2}-a+1}{a}.
\frac{a^{3}+1}{a\left(a^{2}-a+1\right)}
Cancel out a in both numerator and denominator.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{a\left(a^{2}-a+1\right)}
Factor the expressions that are not already factored.
\frac{a+1}{a}
Cancel out a^{2}-a+1 in both numerator and denominator.
\frac{\frac{aa^{2}}{a^{2}}+\frac{1}{a^{2}}}{a-1+\frac{1}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a^{2}}{a^{2}}.
\frac{\frac{aa^{2}+1}{a^{2}}}{a-1+\frac{1}{a}}
Since \frac{aa^{2}}{a^{2}} and \frac{1}{a^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{3}+1}{a^{2}}}{a-1+\frac{1}{a}}
Do the multiplications in aa^{2}+1.
\frac{\frac{a^{3}+1}{a^{2}}}{\frac{\left(a-1\right)a}{a}+\frac{1}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-1 times \frac{a}{a}.
\frac{\frac{a^{3}+1}{a^{2}}}{\frac{\left(a-1\right)a+1}{a}}
Since \frac{\left(a-1\right)a}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{3}+1}{a^{2}}}{\frac{a^{2}-a+1}{a}}
Do the multiplications in \left(a-1\right)a+1.
\frac{\left(a^{3}+1\right)a}{a^{2}\left(a^{2}-a+1\right)}
Divide \frac{a^{3}+1}{a^{2}} by \frac{a^{2}-a+1}{a} by multiplying \frac{a^{3}+1}{a^{2}} by the reciprocal of \frac{a^{2}-a+1}{a}.
\frac{a^{3}+1}{a\left(a^{2}-a+1\right)}
Cancel out a in both numerator and denominator.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)}{a\left(a^{2}-a+1\right)}
Factor the expressions that are not already factored.
\frac{a+1}{a}
Cancel out a^{2}-a+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}