Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-\left(\frac{1}{2}b\right)^{2}-\left(3a-2b\right)
Consider \left(a+\frac{1}{2}b\right)\left(a-\frac{1}{2}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-\left(\frac{1}{2}\right)^{2}b^{2}-\left(3a-2b\right)
Expand \left(\frac{1}{2}b\right)^{2}.
a^{2}-\frac{1}{4}b^{2}-\left(3a-2b\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
a^{2}-\frac{1}{4}b^{2}-3a-\left(-2b\right)
To find the opposite of 3a-2b, find the opposite of each term.
a^{2}-\frac{1}{4}b^{2}-3a+2b
The opposite of -2b is 2b.
a^{2}-\left(\frac{1}{2}b\right)^{2}-\left(3a-2b\right)
Consider \left(a+\frac{1}{2}b\right)\left(a-\frac{1}{2}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-\left(\frac{1}{2}\right)^{2}b^{2}-\left(3a-2b\right)
Expand \left(\frac{1}{2}b\right)^{2}.
a^{2}-\frac{1}{4}b^{2}-\left(3a-2b\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
a^{2}-\frac{1}{4}b^{2}-3a-\left(-2b\right)
To find the opposite of 3a-2b, find the opposite of each term.
a^{2}-\frac{1}{4}b^{2}-3a+2b
The opposite of -2b is 2b.