Solve for X
X=\sqrt{969}-12\approx 19.128764833
X=-\left(\sqrt{969}+12\right)\approx -43.128764833
Share
Copied to clipboard
X^{2}+24X+144+\left(4+12\right)^{2}=35^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(X+12\right)^{2}.
X^{2}+24X+144+16^{2}=35^{2}
Add 4 and 12 to get 16.
X^{2}+24X+144+256=35^{2}
Calculate 16 to the power of 2 and get 256.
X^{2}+24X+400=35^{2}
Add 144 and 256 to get 400.
X^{2}+24X+400=1225
Calculate 35 to the power of 2 and get 1225.
X^{2}+24X+400-1225=0
Subtract 1225 from both sides.
X^{2}+24X-825=0
Subtract 1225 from 400 to get -825.
X=\frac{-24±\sqrt{24^{2}-4\left(-825\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 24 for b, and -825 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
X=\frac{-24±\sqrt{576-4\left(-825\right)}}{2}
Square 24.
X=\frac{-24±\sqrt{576+3300}}{2}
Multiply -4 times -825.
X=\frac{-24±\sqrt{3876}}{2}
Add 576 to 3300.
X=\frac{-24±2\sqrt{969}}{2}
Take the square root of 3876.
X=\frac{2\sqrt{969}-24}{2}
Now solve the equation X=\frac{-24±2\sqrt{969}}{2} when ± is plus. Add -24 to 2\sqrt{969}.
X=\sqrt{969}-12
Divide -24+2\sqrt{969} by 2.
X=\frac{-2\sqrt{969}-24}{2}
Now solve the equation X=\frac{-24±2\sqrt{969}}{2} when ± is minus. Subtract 2\sqrt{969} from -24.
X=-\sqrt{969}-12
Divide -24-2\sqrt{969} by 2.
X=\sqrt{969}-12 X=-\sqrt{969}-12
The equation is now solved.
X^{2}+24X+144+\left(4+12\right)^{2}=35^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(X+12\right)^{2}.
X^{2}+24X+144+16^{2}=35^{2}
Add 4 and 12 to get 16.
X^{2}+24X+144+256=35^{2}
Calculate 16 to the power of 2 and get 256.
X^{2}+24X+400=35^{2}
Add 144 and 256 to get 400.
X^{2}+24X+400=1225
Calculate 35 to the power of 2 and get 1225.
X^{2}+24X=1225-400
Subtract 400 from both sides.
X^{2}+24X=825
Subtract 400 from 1225 to get 825.
X^{2}+24X+12^{2}=825+12^{2}
Divide 24, the coefficient of the x term, by 2 to get 12. Then add the square of 12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
X^{2}+24X+144=825+144
Square 12.
X^{2}+24X+144=969
Add 825 to 144.
\left(X+12\right)^{2}=969
Factor X^{2}+24X+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(X+12\right)^{2}}=\sqrt{969}
Take the square root of both sides of the equation.
X+12=\sqrt{969} X+12=-\sqrt{969}
Simplify.
X=\sqrt{969}-12 X=-\sqrt{969}-12
Subtract 12 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}