Solve for P
\left\{\begin{matrix}\\P=\frac{7V_{c}}{6}\text{, }&\text{unconditionally}\\P\in \mathrm{R}\text{, }&l=0\end{matrix}\right.
Solve for V_c
\left\{\begin{matrix}\\V_{c}=\frac{6P}{7}\text{, }&\text{unconditionally}\\V_{c}\in \mathrm{R}\text{, }&l=0\end{matrix}\right.
Share
Copied to clipboard
V_{c}\times 7l-4Pl-P\times 2l=0
Multiply -1 and 4 to get -4.
V_{c}\times 7l-4Pl-2Pl=0
Multiply -1 and 2 to get -2.
V_{c}\times 7l-6Pl=0
Combine -4Pl and -2Pl to get -6Pl.
-6Pl=-V_{c}\times 7l
Subtract V_{c}\times 7l from both sides. Anything subtracted from zero gives its negation.
\left(-6l\right)P=-7V_{c}l
The equation is in standard form.
\frac{\left(-6l\right)P}{-6l}=-\frac{7V_{c}l}{-6l}
Divide both sides by -6l.
P=-\frac{7V_{c}l}{-6l}
Dividing by -6l undoes the multiplication by -6l.
P=\frac{7V_{c}}{6}
Divide -7V_{c}l by -6l.
V_{c}\times 7l-P\times 4l=0+P\times 2l
Add P\times 2l to both sides.
V_{c}\times 7l-P\times 4l=P\times 2l
Anything plus zero gives itself.
V_{c}\times 7l=P\times 2l+P\times 4l
Add P\times 4l to both sides.
V_{c}\times 7l=6Pl
Combine P\times 2l and P\times 4l to get 6Pl.
7lV_{c}=6Pl
The equation is in standard form.
\frac{7lV_{c}}{7l}=\frac{6Pl}{7l}
Divide both sides by 7l.
V_{c}=\frac{6Pl}{7l}
Dividing by 7l undoes the multiplication by 7l.
V_{c}=\frac{6P}{7}
Divide 6Pl by 7l.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}