Solve for T_1
T_{1}=\frac{281T_{2}^{4}}{40}+T_{2}-0.5
Share
Copied to clipboard
0.8T_{1}-0.8T_{2}=T_{2}^{4}\times 5.62-8\times 0.05
Use the distributive property to multiply T_{1}-T_{2} by 0.8.
0.8T_{1}-0.8T_{2}=T_{2}^{4}\times 5.62-0.4
Multiply 8 and 0.05 to get 0.4.
0.8T_{1}=T_{2}^{4}\times 5.62-0.4+0.8T_{2}
Add 0.8T_{2} to both sides.
0.8T_{1}=\frac{281T_{2}^{4}}{50}+\frac{4T_{2}}{5}-0.4
The equation is in standard form.
\frac{0.8T_{1}}{0.8}=\frac{\frac{281T_{2}^{4}}{50}+\frac{4T_{2}}{5}-0.4}{0.8}
Divide both sides of the equation by 0.8, which is the same as multiplying both sides by the reciprocal of the fraction.
T_{1}=\frac{\frac{281T_{2}^{4}}{50}+\frac{4T_{2}}{5}-0.4}{0.8}
Dividing by 0.8 undoes the multiplication by 0.8.
T_{1}=\frac{281T_{2}^{4}}{40}+T_{2}-\frac{1}{2}
Divide \frac{281T_{2}^{4}}{50}-0.4+\frac{4T_{2}}{5} by 0.8 by multiplying \frac{281T_{2}^{4}}{50}-0.4+\frac{4T_{2}}{5} by the reciprocal of 0.8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}