Skip to main content
Solve for q
Tick mark Image
Solve for E
Tick mark Image

Similar Problems from Web Search

Share

Er^{2}=\frac{1}{4}r^{2}\left(\pi ϵ_{0}\right)^{-1}\times 1\times \frac{q}{r^{2}}
Multiply both sides of the equation by r^{2}.
Er^{2}=\frac{1}{4}r^{2}\pi ^{-1}ϵ_{0}^{-1}\times 1\times \frac{q}{r^{2}}
Expand \left(\pi ϵ_{0}\right)^{-1}.
Er^{2}=\frac{1}{4}r^{2}\pi ^{-1}ϵ_{0}^{-1}\times \frac{q}{r^{2}}
Multiply \frac{1}{4} and 1 to get \frac{1}{4}.
Er^{2}=\frac{q}{4r^{2}}r^{2}\pi ^{-1}ϵ_{0}^{-1}
Multiply \frac{1}{4} times \frac{q}{r^{2}} by multiplying numerator times numerator and denominator times denominator.
Er^{2}=\frac{qr^{2}}{4r^{2}}\pi ^{-1}ϵ_{0}^{-1}
Express \frac{q}{4r^{2}}r^{2} as a single fraction.
Er^{2}=\frac{q}{4}\pi ^{-1}ϵ_{0}^{-1}
Cancel out r^{2} in both numerator and denominator.
Er^{2}=\frac{q\pi ^{-1}}{4}ϵ_{0}^{-1}
Express \frac{q}{4}\pi ^{-1} as a single fraction.
Er^{2}=\frac{q\pi ^{-1}ϵ_{0}^{-1}}{4}
Express \frac{q\pi ^{-1}}{4}ϵ_{0}^{-1} as a single fraction.
\frac{q\pi ^{-1}ϵ_{0}^{-1}}{4}=Er^{2}
Swap sides so that all variable terms are on the left hand side.
q\pi ^{-1}ϵ_{0}^{-1}=4Er^{2}
Multiply both sides of the equation by 4.
\frac{1}{\pi }\times \frac{1}{ϵ_{0}}q=4Er^{2}
Reorder the terms.
ϵ_{0}\pi ^{-1}\times 1\times \frac{1}{ϵ_{0}}q=4Er^{2}ϵ_{0}
Multiply both sides of the equation by ϵ_{0}.
\frac{ϵ_{0}}{ϵ_{0}}\pi ^{-1}\times 1q=4Er^{2}ϵ_{0}
Express ϵ_{0}\times \frac{1}{ϵ_{0}} as a single fraction.
1\pi ^{-1}\times 1q=4Er^{2}ϵ_{0}
Cancel out ϵ_{0} in both numerator and denominator.
\pi ^{-1}q=4Er^{2}ϵ_{0}
Multiply 1 and 1 to get 1.
\frac{1}{\pi }q=4Eϵ_{0}r^{2}
Reorder the terms.
\frac{\frac{1}{\pi }q\pi }{1}=\frac{4Eϵ_{0}r^{2}\pi }{1}
Divide both sides by \pi ^{-1}.
q=\frac{4Eϵ_{0}r^{2}\pi }{1}
Dividing by \pi ^{-1} undoes the multiplication by \pi ^{-1}.
q=4\pi Eϵ_{0}r^{2}
Divide 4Eϵ_{0}r^{2} by \pi ^{-1}.