Solve for D
\left\{\begin{matrix}D=\frac{2x+y+6e^{3t}}{x-y}\text{, }&x\neq y\\D\in \mathrm{R}\text{, }&x=-2e^{3t}\text{ and }y=-2e^{3t}\end{matrix}\right.
Solve for t
t=\frac{\ln(Dx-2x-Dy-y)-\ln(6)}{3}
\left(D>\frac{2x+y}{x-y}\text{ and }x>y\right)\text{ or }\left(x=y\text{ and }y<0\right)\text{ or }\left(D<\frac{2x+y}{x-y}\text{ and }x<y\right)
Graph
Share
Copied to clipboard
Dx-2x-\left(D+1\right)y=6e^{3t}
Use the distributive property to multiply D-2 by x.
Dx-2x-\left(Dy+y\right)=6e^{3t}
Use the distributive property to multiply D+1 by y.
Dx-2x-Dy-y=6e^{3t}
To find the opposite of Dy+y, find the opposite of each term.
Dx-Dy-y=6e^{3t}+2x
Add 2x to both sides.
Dx-Dy=6e^{3t}+2x+y
Add y to both sides.
\left(x-y\right)D=6e^{3t}+2x+y
Combine all terms containing D.
\left(x-y\right)D=2x+y+6e^{3t}
The equation is in standard form.
\frac{\left(x-y\right)D}{x-y}=\frac{2x+y+6e^{3t}}{x-y}
Divide both sides by x-y.
D=\frac{2x+y+6e^{3t}}{x-y}
Dividing by x-y undoes the multiplication by x-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}