Solve for B
B=\sqrt{29}\approx 5.385164807
B=-\sqrt{29}\approx -5.385164807
Share
Copied to clipboard
B^{2}=2^{2}+\left(9-4\right)^{2}
Subtract 1 from 3 to get 2.
B^{2}=4+\left(9-4\right)^{2}
Calculate 2 to the power of 2 and get 4.
B^{2}=4+5^{2}
Subtract 4 from 9 to get 5.
B^{2}=4+25
Calculate 5 to the power of 2 and get 25.
B^{2}=29
Add 4 and 25 to get 29.
B=\sqrt{29} B=-\sqrt{29}
Take the square root of both sides of the equation.
B^{2}=2^{2}+\left(9-4\right)^{2}
Subtract 1 from 3 to get 2.
B^{2}=4+\left(9-4\right)^{2}
Calculate 2 to the power of 2 and get 4.
B^{2}=4+5^{2}
Subtract 4 from 9 to get 5.
B^{2}=4+25
Calculate 5 to the power of 2 and get 25.
B^{2}=29
Add 4 and 25 to get 29.
B^{2}-29=0
Subtract 29 from both sides.
B=\frac{0±\sqrt{0^{2}-4\left(-29\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
B=\frac{0±\sqrt{-4\left(-29\right)}}{2}
Square 0.
B=\frac{0±\sqrt{116}}{2}
Multiply -4 times -29.
B=\frac{0±2\sqrt{29}}{2}
Take the square root of 116.
B=\sqrt{29}
Now solve the equation B=\frac{0±2\sqrt{29}}{2} when ± is plus.
B=-\sqrt{29}
Now solve the equation B=\frac{0±2\sqrt{29}}{2} when ± is minus.
B=\sqrt{29} B=-\sqrt{29}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}