Solve for A
A=\frac{13}{B}
B\neq 0
Solve for B
B=\frac{13}{A}
A\neq 0
Quiz
Linear Equation
5 problems similar to:
( A B ) = \sqrt { ( - 4 - 8 ) ^ { 2 } + ( 2 - 7 ) ^ { 2 } }
Share
Copied to clipboard
AB=\sqrt{\left(-12\right)^{2}+\left(2-7\right)^{2}}
Subtract 8 from -4 to get -12.
AB=\sqrt{144+\left(2-7\right)^{2}}
Calculate -12 to the power of 2 and get 144.
AB=\sqrt{144+\left(-5\right)^{2}}
Subtract 7 from 2 to get -5.
AB=\sqrt{144+25}
Calculate -5 to the power of 2 and get 25.
AB=\sqrt{169}
Add 144 and 25 to get 169.
AB=13
Calculate the square root of 169 and get 13.
BA=13
The equation is in standard form.
\frac{BA}{B}=\frac{13}{B}
Divide both sides by B.
A=\frac{13}{B}
Dividing by B undoes the multiplication by B.
AB=\sqrt{\left(-12\right)^{2}+\left(2-7\right)^{2}}
Subtract 8 from -4 to get -12.
AB=\sqrt{144+\left(2-7\right)^{2}}
Calculate -12 to the power of 2 and get 144.
AB=\sqrt{144+\left(-5\right)^{2}}
Subtract 7 from 2 to get -5.
AB=\sqrt{144+25}
Calculate -5 to the power of 2 and get 25.
AB=\sqrt{169}
Add 144 and 25 to get 169.
AB=13
Calculate the square root of 169 and get 13.
\frac{AB}{A}=\frac{13}{A}
Divide both sides by A.
B=\frac{13}{A}
Dividing by A undoes the multiplication by A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}