Skip to main content
Solve for A (complex solution)
Tick mark Image
Solve for B (complex solution)
Tick mark Image
Solve for A
Tick mark Image
Solve for B
Tick mark Image

Similar Problems from Web Search

Share

\left(A-B\right)^{2}=\left(A-B\right)^{2}
Multiply A-B and A-B to get \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}-A^{2}=-2AB+B^{2}
Subtract A^{2} from both sides.
-2AB+B^{2}=-2AB+B^{2}
Combine A^{2} and -A^{2} to get 0.
-2AB+B^{2}+2AB=B^{2}
Add 2AB to both sides.
B^{2}=B^{2}
Combine -2AB and 2AB to get 0.
\text{true}
Reorder the terms.
A\in \mathrm{C}
This is true for any A.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Multiply A-B and A-B to get \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}+2AB=A^{2}+B^{2}
Add 2AB to both sides.
A^{2}+B^{2}=A^{2}+B^{2}
Combine -2AB and 2AB to get 0.
A^{2}+B^{2}-B^{2}=A^{2}
Subtract B^{2} from both sides.
A^{2}=A^{2}
Combine B^{2} and -B^{2} to get 0.
\text{true}
Reorder the terms.
B\in \mathrm{C}
This is true for any B.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Multiply A-B and A-B to get \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}-A^{2}=-2AB+B^{2}
Subtract A^{2} from both sides.
-2AB+B^{2}=-2AB+B^{2}
Combine A^{2} and -A^{2} to get 0.
-2AB+B^{2}+2AB=B^{2}
Add 2AB to both sides.
B^{2}=B^{2}
Combine -2AB and 2AB to get 0.
\text{true}
Reorder the terms.
A\in \mathrm{R}
This is true for any A.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Multiply A-B and A-B to get \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}+2AB=A^{2}+B^{2}
Add 2AB to both sides.
A^{2}+B^{2}=A^{2}+B^{2}
Combine -2AB and 2AB to get 0.
A^{2}+B^{2}-B^{2}=A^{2}
Subtract B^{2} from both sides.
A^{2}=A^{2}
Combine B^{2} and -B^{2} to get 0.
\text{true}
Reorder the terms.
B\in \mathrm{R}
This is true for any B.