Solve for A (complex solution)
A\in \mathrm{C}
Solve for B (complex solution)
B\in \mathrm{C}
Solve for A
A\in \mathrm{R}
Solve for B
B\in \mathrm{R}
Share
Copied to clipboard
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Multiply A-B and A-B to get \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}-A^{2}=-2AB+B^{2}
Subtract A^{2} from both sides.
-2AB+B^{2}=-2AB+B^{2}
Combine A^{2} and -A^{2} to get 0.
-2AB+B^{2}+2AB=B^{2}
Add 2AB to both sides.
B^{2}=B^{2}
Combine -2AB and 2AB to get 0.
\text{true}
Reorder the terms.
A\in \mathrm{C}
This is true for any A.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Multiply A-B and A-B to get \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}+2AB=A^{2}+B^{2}
Add 2AB to both sides.
A^{2}+B^{2}=A^{2}+B^{2}
Combine -2AB and 2AB to get 0.
A^{2}+B^{2}-B^{2}=A^{2}
Subtract B^{2} from both sides.
A^{2}=A^{2}
Combine B^{2} and -B^{2} to get 0.
\text{true}
Reorder the terms.
B\in \mathrm{C}
This is true for any B.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Multiply A-B and A-B to get \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}-A^{2}=-2AB+B^{2}
Subtract A^{2} from both sides.
-2AB+B^{2}=-2AB+B^{2}
Combine A^{2} and -A^{2} to get 0.
-2AB+B^{2}+2AB=B^{2}
Add 2AB to both sides.
B^{2}=B^{2}
Combine -2AB and 2AB to get 0.
\text{true}
Reorder the terms.
A\in \mathrm{R}
This is true for any A.
\left(A-B\right)^{2}=\left(A-B\right)^{2}
Multiply A-B and A-B to get \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=\left(A-B\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}=A^{2}-2AB+B^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(A-B\right)^{2}.
A^{2}-2AB+B^{2}+2AB=A^{2}+B^{2}
Add 2AB to both sides.
A^{2}+B^{2}=A^{2}+B^{2}
Combine -2AB and 2AB to get 0.
A^{2}+B^{2}-B^{2}=A^{2}
Subtract B^{2} from both sides.
A^{2}=A^{2}
Combine B^{2} and -B^{2} to get 0.
\text{true}
Reorder the terms.
B\in \mathrm{R}
This is true for any B.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}