Solve for A
A=3x-\frac{15}{4}
x\neq 2
Solve for x
x=\frac{A}{3}+\frac{5}{4}
A\neq \frac{9}{4}
Graph
Quiz
Linear Equation
5 problems similar to:
( A ) \frac { 1 } { 3 x - 6 } = \frac { 3 } { 4 x - 8 } + 1
Share
Copied to clipboard
A\times 4\times 1=3\times 3+12\left(x-2\right)
Multiply both sides of the equation by 12\left(x-2\right), the least common multiple of 3x-6,4x-8.
A\times 4=3\times 3+12\left(x-2\right)
Multiply 4 and 1 to get 4.
A\times 4=9+12\left(x-2\right)
Multiply 3 and 3 to get 9.
A\times 4=9+12x-24
Use the distributive property to multiply 12 by x-2.
A\times 4=-15+12x
Subtract 24 from 9 to get -15.
4A=12x-15
The equation is in standard form.
\frac{4A}{4}=\frac{12x-15}{4}
Divide both sides by 4.
A=\frac{12x-15}{4}
Dividing by 4 undoes the multiplication by 4.
A=3x-\frac{15}{4}
Divide -15+12x by 4.
A\times 4\times 1=3\times 3+12\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 12\left(x-2\right), the least common multiple of 3x-6,4x-8.
A\times 4=3\times 3+12\left(x-2\right)
Multiply 4 and 1 to get 4.
A\times 4=9+12\left(x-2\right)
Multiply 3 and 3 to get 9.
A\times 4=9+12x-24
Use the distributive property to multiply 12 by x-2.
A\times 4=-15+12x
Subtract 24 from 9 to get -15.
-15+12x=A\times 4
Swap sides so that all variable terms are on the left hand side.
12x=A\times 4+15
Add 15 to both sides.
12x=4A+15
The equation is in standard form.
\frac{12x}{12}=\frac{4A+15}{12}
Divide both sides by 12.
x=\frac{4A+15}{12}
Dividing by 12 undoes the multiplication by 12.
x=\frac{A}{3}+\frac{5}{4}
Divide 4A+15 by 12.
x=\frac{A}{3}+\frac{5}{4}\text{, }x\neq 2
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}