Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9216+63^{2}=x^{2}-111^{2}-8350
Calculate 96 to the power of 2 and get 9216.
9216+3969=x^{2}-111^{2}-8350
Calculate 63 to the power of 2 and get 3969.
13185=x^{2}-111^{2}-8350
Add 9216 and 3969 to get 13185.
13185=x^{2}-12321-8350
Calculate 111 to the power of 2 and get 12321.
13185=x^{2}-20671
Subtract 8350 from -12321 to get -20671.
x^{2}-20671=13185
Swap sides so that all variable terms are on the left hand side.
x^{2}-20671-13185=0
Subtract 13185 from both sides.
x^{2}-33856=0
Subtract 13185 from -20671 to get -33856.
\left(x-184\right)\left(x+184\right)=0
Consider x^{2}-33856. Rewrite x^{2}-33856 as x^{2}-184^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=184 x=-184
To find equation solutions, solve x-184=0 and x+184=0.
9216+63^{2}=x^{2}-111^{2}-8350
Calculate 96 to the power of 2 and get 9216.
9216+3969=x^{2}-111^{2}-8350
Calculate 63 to the power of 2 and get 3969.
13185=x^{2}-111^{2}-8350
Add 9216 and 3969 to get 13185.
13185=x^{2}-12321-8350
Calculate 111 to the power of 2 and get 12321.
13185=x^{2}-20671
Subtract 8350 from -12321 to get -20671.
x^{2}-20671=13185
Swap sides so that all variable terms are on the left hand side.
x^{2}=13185+20671
Add 20671 to both sides.
x^{2}=33856
Add 13185 and 20671 to get 33856.
x=184 x=-184
Take the square root of both sides of the equation.
9216+63^{2}=x^{2}-111^{2}-8350
Calculate 96 to the power of 2 and get 9216.
9216+3969=x^{2}-111^{2}-8350
Calculate 63 to the power of 2 and get 3969.
13185=x^{2}-111^{2}-8350
Add 9216 and 3969 to get 13185.
13185=x^{2}-12321-8350
Calculate 111 to the power of 2 and get 12321.
13185=x^{2}-20671
Subtract 8350 from -12321 to get -20671.
x^{2}-20671=13185
Swap sides so that all variable terms are on the left hand side.
x^{2}-20671-13185=0
Subtract 13185 from both sides.
x^{2}-33856=0
Subtract 13185 from -20671 to get -33856.
x=\frac{0±\sqrt{0^{2}-4\left(-33856\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -33856 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-33856\right)}}{2}
Square 0.
x=\frac{0±\sqrt{135424}}{2}
Multiply -4 times -33856.
x=\frac{0±368}{2}
Take the square root of 135424.
x=184
Now solve the equation x=\frac{0±368}{2} when ± is plus. Divide 368 by 2.
x=-184
Now solve the equation x=\frac{0±368}{2} when ± is minus. Divide -368 by 2.
x=184 x=-184
The equation is now solved.