Solve for m
m=\frac{9}{91n}
n\neq 0
Solve for n
n=\frac{9}{91m}
m\neq 0
Share
Copied to clipboard
8281m^{2}-546mn+9n^{2}-\left(91m+3n\right)^{2}=-108
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(91m-3n\right)^{2}.
8281m^{2}-546mn+9n^{2}-\left(8281m^{2}+546mn+9n^{2}\right)=-108
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(91m+3n\right)^{2}.
8281m^{2}-546mn+9n^{2}-8281m^{2}-546mn-9n^{2}=-108
To find the opposite of 8281m^{2}+546mn+9n^{2}, find the opposite of each term.
-546mn+9n^{2}-546mn-9n^{2}=-108
Combine 8281m^{2} and -8281m^{2} to get 0.
-1092mn+9n^{2}-9n^{2}=-108
Combine -546mn and -546mn to get -1092mn.
-1092mn=-108
Combine 9n^{2} and -9n^{2} to get 0.
\left(-1092n\right)m=-108
The equation is in standard form.
\frac{\left(-1092n\right)m}{-1092n}=-\frac{108}{-1092n}
Divide both sides by -1092n.
m=-\frac{108}{-1092n}
Dividing by -1092n undoes the multiplication by -1092n.
m=\frac{9}{91n}
Divide -108 by -1092n.
8281m^{2}-546mn+9n^{2}-\left(91m+3n\right)^{2}=-108
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(91m-3n\right)^{2}.
8281m^{2}-546mn+9n^{2}-\left(8281m^{2}+546mn+9n^{2}\right)=-108
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(91m+3n\right)^{2}.
8281m^{2}-546mn+9n^{2}-8281m^{2}-546mn-9n^{2}=-108
To find the opposite of 8281m^{2}+546mn+9n^{2}, find the opposite of each term.
-546mn+9n^{2}-546mn-9n^{2}=-108
Combine 8281m^{2} and -8281m^{2} to get 0.
-1092mn+9n^{2}-9n^{2}=-108
Combine -546mn and -546mn to get -1092mn.
-1092mn=-108
Combine 9n^{2} and -9n^{2} to get 0.
\left(-1092m\right)n=-108
The equation is in standard form.
\frac{\left(-1092m\right)n}{-1092m}=-\frac{108}{-1092m}
Divide both sides by -1092m.
n=-\frac{108}{-1092m}
Dividing by -1092m undoes the multiplication by -1092m.
n=\frac{9}{91m}
Divide -108 by -1092m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}