Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{bx-18x+5b-13}{2\left(2x-1\right)}\text{, }&x\neq \frac{1}{2}\\a\in \mathrm{C}\text{, }&x=0\text{ or }\left(b=4\text{ and }x=\frac{1}{2}\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{4ax-18x-2a-13}{x+5}\text{, }&x\neq -5\\b\in \mathrm{C}\text{, }&x=0\text{ or }\left(a=\frac{7}{2}\text{ and }x=-5\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bx-18x+5b-13}{2\left(2x-1\right)}\text{, }&x\neq \frac{1}{2}\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&\left(b=4\text{ and }x=\frac{1}{2}\right)\text{ or }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{4ax-18x-2a-13}{x+5}\text{, }&x\neq -5\text{ and }x\neq 0\\b\in \mathrm{R}\text{, }&\left(a=\frac{7}{2}\text{ and }x=-5\right)\text{ or }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
18x^{2}+25x-3=-3+12x-\left(2a-5b\right)x+\left(4a+b\right)x^{2}
Use the distributive property to multiply 9x-1 by 2x+3 and combine like terms.
18x^{2}+25x-3=-3+12x-\left(2ax-5bx\right)+\left(4a+b\right)x^{2}
Use the distributive property to multiply 2a-5b by x.
18x^{2}+25x-3=-3+12x-2ax+5bx+\left(4a+b\right)x^{2}
To find the opposite of 2ax-5bx, find the opposite of each term.
18x^{2}+25x-3=-3+12x-2ax+5bx+4ax^{2}+bx^{2}
Use the distributive property to multiply 4a+b by x^{2}.
-3+12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-3
Swap sides so that all variable terms are on the left hand side.
12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-3+3
Add 3 to both sides.
12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x
Add -3 and 3 to get 0.
-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-12x
Subtract 12x from both sides.
-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+13x
Combine 25x and -12x to get 13x.
-2ax+4ax^{2}+bx^{2}=18x^{2}+13x-5bx
Subtract 5bx from both sides.
-2ax+4ax^{2}=18x^{2}+13x-5bx-bx^{2}
Subtract bx^{2} from both sides.
4ax^{2}-2ax=-bx^{2}+18x^{2}-5bx+13x
Reorder the terms.
\left(4x^{2}-2x\right)a=-bx^{2}+18x^{2}-5bx+13x
Combine all terms containing a.
\left(4x^{2}-2x\right)a=13x-5bx+18x^{2}-bx^{2}
The equation is in standard form.
\frac{\left(4x^{2}-2x\right)a}{4x^{2}-2x}=\frac{x\left(13-5b+18x-bx\right)}{4x^{2}-2x}
Divide both sides by 4x^{2}-2x.
a=\frac{x\left(13-5b+18x-bx\right)}{4x^{2}-2x}
Dividing by 4x^{2}-2x undoes the multiplication by 4x^{2}-2x.
a=\frac{13-5b+18x-bx}{2\left(2x-1\right)}
Divide x\left(-bx+18x-5b+13\right) by 4x^{2}-2x.
18x^{2}+25x-3=-3+12x-\left(2a-5b\right)x+\left(4a+b\right)x^{2}
Use the distributive property to multiply 9x-1 by 2x+3 and combine like terms.
18x^{2}+25x-3=-3+12x-\left(2ax-5bx\right)+\left(4a+b\right)x^{2}
Use the distributive property to multiply 2a-5b by x.
18x^{2}+25x-3=-3+12x-2ax+5bx+\left(4a+b\right)x^{2}
To find the opposite of 2ax-5bx, find the opposite of each term.
18x^{2}+25x-3=-3+12x-2ax+5bx+4ax^{2}+bx^{2}
Use the distributive property to multiply 4a+b by x^{2}.
-3+12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-3
Swap sides so that all variable terms are on the left hand side.
12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-3+3
Add 3 to both sides.
12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x
Add -3 and 3 to get 0.
-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-12x
Subtract 12x from both sides.
-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+13x
Combine 25x and -12x to get 13x.
5bx+4ax^{2}+bx^{2}=18x^{2}+13x+2ax
Add 2ax to both sides.
5bx+bx^{2}=18x^{2}+13x+2ax-4ax^{2}
Subtract 4ax^{2} from both sides.
\left(5x+x^{2}\right)b=18x^{2}+13x+2ax-4ax^{2}
Combine all terms containing b.
\left(x^{2}+5x\right)b=13x+2ax+18x^{2}-4ax^{2}
The equation is in standard form.
\frac{\left(x^{2}+5x\right)b}{x^{2}+5x}=\frac{x\left(13+2a+18x-4ax\right)}{x^{2}+5x}
Divide both sides by 5x+x^{2}.
b=\frac{x\left(13+2a+18x-4ax\right)}{x^{2}+5x}
Dividing by 5x+x^{2} undoes the multiplication by 5x+x^{2}.
b=\frac{13+2a+18x-4ax}{x+5}
Divide x\left(18x+13+2a-4ax\right) by 5x+x^{2}.
18x^{2}+25x-3=-3+12x-\left(2a-5b\right)x+\left(4a+b\right)x^{2}
Use the distributive property to multiply 9x-1 by 2x+3 and combine like terms.
18x^{2}+25x-3=-3+12x-\left(2ax-5bx\right)+\left(4a+b\right)x^{2}
Use the distributive property to multiply 2a-5b by x.
18x^{2}+25x-3=-3+12x-2ax+5bx+\left(4a+b\right)x^{2}
To find the opposite of 2ax-5bx, find the opposite of each term.
18x^{2}+25x-3=-3+12x-2ax+5bx+4ax^{2}+bx^{2}
Use the distributive property to multiply 4a+b by x^{2}.
-3+12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-3
Swap sides so that all variable terms are on the left hand side.
12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-3+3
Add 3 to both sides.
12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x
Add -3 and 3 to get 0.
-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-12x
Subtract 12x from both sides.
-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+13x
Combine 25x and -12x to get 13x.
-2ax+4ax^{2}+bx^{2}=18x^{2}+13x-5bx
Subtract 5bx from both sides.
-2ax+4ax^{2}=18x^{2}+13x-5bx-bx^{2}
Subtract bx^{2} from both sides.
4ax^{2}-2ax=-bx^{2}+18x^{2}-5bx+13x
Reorder the terms.
\left(4x^{2}-2x\right)a=-bx^{2}+18x^{2}-5bx+13x
Combine all terms containing a.
\left(4x^{2}-2x\right)a=13x-5bx+18x^{2}-bx^{2}
The equation is in standard form.
\frac{\left(4x^{2}-2x\right)a}{4x^{2}-2x}=\frac{x\left(13-5b+18x-bx\right)}{4x^{2}-2x}
Divide both sides by -2x+4x^{2}.
a=\frac{x\left(13-5b+18x-bx\right)}{4x^{2}-2x}
Dividing by -2x+4x^{2} undoes the multiplication by -2x+4x^{2}.
a=\frac{13-5b+18x-bx}{2\left(2x-1\right)}
Divide x\left(-bx+18x-5b+13\right) by -2x+4x^{2}.
18x^{2}+25x-3=-3+12x-\left(2a-5b\right)x+\left(4a+b\right)x^{2}
Use the distributive property to multiply 9x-1 by 2x+3 and combine like terms.
18x^{2}+25x-3=-3+12x-\left(2ax-5bx\right)+\left(4a+b\right)x^{2}
Use the distributive property to multiply 2a-5b by x.
18x^{2}+25x-3=-3+12x-2ax+5bx+\left(4a+b\right)x^{2}
To find the opposite of 2ax-5bx, find the opposite of each term.
18x^{2}+25x-3=-3+12x-2ax+5bx+4ax^{2}+bx^{2}
Use the distributive property to multiply 4a+b by x^{2}.
-3+12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-3
Swap sides so that all variable terms are on the left hand side.
12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-3+3
Add 3 to both sides.
12x-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x
Add -3 and 3 to get 0.
-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+25x-12x
Subtract 12x from both sides.
-2ax+5bx+4ax^{2}+bx^{2}=18x^{2}+13x
Combine 25x and -12x to get 13x.
5bx+4ax^{2}+bx^{2}=18x^{2}+13x+2ax
Add 2ax to both sides.
5bx+bx^{2}=18x^{2}+13x+2ax-4ax^{2}
Subtract 4ax^{2} from both sides.
\left(5x+x^{2}\right)b=18x^{2}+13x+2ax-4ax^{2}
Combine all terms containing b.
\left(x^{2}+5x\right)b=13x+2ax+18x^{2}-4ax^{2}
The equation is in standard form.
\frac{\left(x^{2}+5x\right)b}{x^{2}+5x}=\frac{x\left(13+2a+18x-4ax\right)}{x^{2}+5x}
Divide both sides by x^{2}+5x.
b=\frac{x\left(13+2a+18x-4ax\right)}{x^{2}+5x}
Dividing by x^{2}+5x undoes the multiplication by x^{2}+5x.
b=\frac{13+2a+18x-4ax}{x+5}
Divide x\left(18x+13+2a-4ax\right) by x^{2}+5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}