Solve for x (complex solution)
x=10i
x=-10i
Graph
Share
Copied to clipboard
9^{2}x^{2}-\left(12x\right)^{2}=6300
Expand \left(9x\right)^{2}.
81x^{2}-\left(12x\right)^{2}=6300
Calculate 9 to the power of 2 and get 81.
81x^{2}-12^{2}x^{2}=6300
Expand \left(12x\right)^{2}.
81x^{2}-144x^{2}=6300
Calculate 12 to the power of 2 and get 144.
-63x^{2}=6300
Combine 81x^{2} and -144x^{2} to get -63x^{2}.
x^{2}=\frac{6300}{-63}
Divide both sides by -63.
x^{2}=-100
Divide 6300 by -63 to get -100.
x=10i x=-10i
The equation is now solved.
9^{2}x^{2}-\left(12x\right)^{2}=6300
Expand \left(9x\right)^{2}.
81x^{2}-\left(12x\right)^{2}=6300
Calculate 9 to the power of 2 and get 81.
81x^{2}-12^{2}x^{2}=6300
Expand \left(12x\right)^{2}.
81x^{2}-144x^{2}=6300
Calculate 12 to the power of 2 and get 144.
-63x^{2}=6300
Combine 81x^{2} and -144x^{2} to get -63x^{2}.
-63x^{2}-6300=0
Subtract 6300 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-63\right)\left(-6300\right)}}{2\left(-63\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -63 for a, 0 for b, and -6300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-63\right)\left(-6300\right)}}{2\left(-63\right)}
Square 0.
x=\frac{0±\sqrt{252\left(-6300\right)}}{2\left(-63\right)}
Multiply -4 times -63.
x=\frac{0±\sqrt{-1587600}}{2\left(-63\right)}
Multiply 252 times -6300.
x=\frac{0±1260i}{2\left(-63\right)}
Take the square root of -1587600.
x=\frac{0±1260i}{-126}
Multiply 2 times -63.
x=-10i
Now solve the equation x=\frac{0±1260i}{-126} when ± is plus.
x=10i
Now solve the equation x=\frac{0±1260i}{-126} when ± is minus.
x=-10i x=10i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}