Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. h
Tick mark Image

Similar Problems from Web Search

Share

9h^{3}+6h^{2}+2h+3+2h+9
Combine h^{2} and 5h^{2} to get 6h^{2}.
9h^{3}+6h^{2}+4h+3+9
Combine 2h and 2h to get 4h.
9h^{3}+6h^{2}+4h+12
Add 3 and 9 to get 12.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+6h^{2}+2h+3+2h+9)
Combine h^{2} and 5h^{2} to get 6h^{2}.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+6h^{2}+4h+3+9)
Combine 2h and 2h to get 4h.
\frac{\mathrm{d}}{\mathrm{d}h}(9h^{3}+6h^{2}+4h+12)
Add 3 and 9 to get 12.
3\times 9h^{3-1}+2\times 6h^{2-1}+4h^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
27h^{3-1}+2\times 6h^{2-1}+4h^{1-1}
Multiply 3 times 9.
27h^{2}+2\times 6h^{2-1}+4h^{1-1}
Subtract 1 from 3.
27h^{2}+12h^{2-1}+4h^{1-1}
Multiply 2 times 6.
27h^{2}+12h^{1}+4h^{1-1}
Subtract 1 from 2.
27h^{2}+12h^{1}+4h^{0}
Subtract 1 from 1.
27h^{2}+12h+4h^{0}
For any term t, t^{1}=t.
27h^{2}+12h+4\times 1
For any term t except 0, t^{0}=1.
27h^{2}+12h+4
For any term t, t\times 1=t and 1t=t.