Evaluate
\frac{\left(18a-b\right)\left(20a+b\right)}{8}
Expand
-\frac{ab}{4}-\frac{b^{2}}{8}+45a^{2}
Share
Copied to clipboard
45a^{2}+9a\times \frac{1}{4}b-\frac{1}{2}b\times 5a-\frac{1}{2}b\times \frac{1}{4}b
Apply the distributive property by multiplying each term of 9a-\frac{1}{2}b by each term of 5a+\frac{1}{4}b.
45a^{2}+9a\times \frac{1}{4}b-\frac{1}{2}b\times 5a-\frac{1}{2}b^{2}\times \frac{1}{4}
Multiply b and b to get b^{2}.
45a^{2}+\frac{9}{4}ab-\frac{1}{2}b\times 5a-\frac{1}{2}b^{2}\times \frac{1}{4}
Multiply 9 and \frac{1}{4} to get \frac{9}{4}.
45a^{2}+\frac{9}{4}ab+\frac{-5}{2}ba-\frac{1}{2}b^{2}\times \frac{1}{4}
Express -\frac{1}{2}\times 5 as a single fraction.
45a^{2}+\frac{9}{4}ab-\frac{5}{2}ba-\frac{1}{2}b^{2}\times \frac{1}{4}
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
45a^{2}-\frac{1}{4}ab-\frac{1}{2}b^{2}\times \frac{1}{4}
Combine \frac{9}{4}ab and -\frac{5}{2}ba to get -\frac{1}{4}ab.
45a^{2}-\frac{1}{4}ab+\frac{-1}{2\times 4}b^{2}
Multiply -\frac{1}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
45a^{2}-\frac{1}{4}ab+\frac{-1}{8}b^{2}
Do the multiplications in the fraction \frac{-1}{2\times 4}.
45a^{2}-\frac{1}{4}ab-\frac{1}{8}b^{2}
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
45a^{2}+9a\times \frac{1}{4}b-\frac{1}{2}b\times 5a-\frac{1}{2}b\times \frac{1}{4}b
Apply the distributive property by multiplying each term of 9a-\frac{1}{2}b by each term of 5a+\frac{1}{4}b.
45a^{2}+9a\times \frac{1}{4}b-\frac{1}{2}b\times 5a-\frac{1}{2}b^{2}\times \frac{1}{4}
Multiply b and b to get b^{2}.
45a^{2}+\frac{9}{4}ab-\frac{1}{2}b\times 5a-\frac{1}{2}b^{2}\times \frac{1}{4}
Multiply 9 and \frac{1}{4} to get \frac{9}{4}.
45a^{2}+\frac{9}{4}ab+\frac{-5}{2}ba-\frac{1}{2}b^{2}\times \frac{1}{4}
Express -\frac{1}{2}\times 5 as a single fraction.
45a^{2}+\frac{9}{4}ab-\frac{5}{2}ba-\frac{1}{2}b^{2}\times \frac{1}{4}
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
45a^{2}-\frac{1}{4}ab-\frac{1}{2}b^{2}\times \frac{1}{4}
Combine \frac{9}{4}ab and -\frac{5}{2}ba to get -\frac{1}{4}ab.
45a^{2}-\frac{1}{4}ab+\frac{-1}{2\times 4}b^{2}
Multiply -\frac{1}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
45a^{2}-\frac{1}{4}ab+\frac{-1}{8}b^{2}
Do the multiplications in the fraction \frac{-1}{2\times 4}.
45a^{2}-\frac{1}{4}ab-\frac{1}{8}b^{2}
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}