Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

13x-36-x^{2}=3
Use the distributive property to multiply 9-x by x-4 and combine like terms.
13x-36-x^{2}-3=0
Subtract 3 from both sides.
13x-39-x^{2}=0
Subtract 3 from -36 to get -39.
-x^{2}+13x-39=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\left(-39\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 13 for b, and -39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-1\right)\left(-39\right)}}{2\left(-1\right)}
Square 13.
x=\frac{-13±\sqrt{169+4\left(-39\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-13±\sqrt{169-156}}{2\left(-1\right)}
Multiply 4 times -39.
x=\frac{-13±\sqrt{13}}{2\left(-1\right)}
Add 169 to -156.
x=\frac{-13±\sqrt{13}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{13}-13}{-2}
Now solve the equation x=\frac{-13±\sqrt{13}}{-2} when ± is plus. Add -13 to \sqrt{13}.
x=\frac{13-\sqrt{13}}{2}
Divide -13+\sqrt{13} by -2.
x=\frac{-\sqrt{13}-13}{-2}
Now solve the equation x=\frac{-13±\sqrt{13}}{-2} when ± is minus. Subtract \sqrt{13} from -13.
x=\frac{\sqrt{13}+13}{2}
Divide -13-\sqrt{13} by -2.
x=\frac{13-\sqrt{13}}{2} x=\frac{\sqrt{13}+13}{2}
The equation is now solved.
13x-36-x^{2}=3
Use the distributive property to multiply 9-x by x-4 and combine like terms.
13x-x^{2}=3+36
Add 36 to both sides.
13x-x^{2}=39
Add 3 and 36 to get 39.
-x^{2}+13x=39
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+13x}{-1}=\frac{39}{-1}
Divide both sides by -1.
x^{2}+\frac{13}{-1}x=\frac{39}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-13x=\frac{39}{-1}
Divide 13 by -1.
x^{2}-13x=-39
Divide 39 by -1.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-39+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=-39+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{13}{4}
Add -39 to \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{13}{4}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{\sqrt{13}}{2} x-\frac{13}{2}=-\frac{\sqrt{13}}{2}
Simplify.
x=\frac{\sqrt{13}+13}{2} x=\frac{13-\sqrt{13}}{2}
Add \frac{13}{2} to both sides of the equation.